Workflow
形状记忆合金
icon
Search documents
科创院士谈|冷劲松:材料科学必将从智能材料走向智慧材料
Di Yi Cai Jing· 2025-09-20 15:21
智能材料已成为新材料领域的前沿方向。 纵观人类文明发展史,材料科学的每一次重大突破都推动了社会生产力的跨越式发展。随着人工智能时 代的到来,材料科学也有望迎来又一次飞跃的机会。 9月19日上午,在深圳创新发展研究院"科技创新院士报告厅"活动上,中国科学院院士、哈尔滨工业大 学未来技术学院院长冷劲松,围绕"具身智能:智能材料与人工智能"主题作了专题分享。 在冷劲松看来,智能材料已成为新材料领域的前沿方向,而它与人工智能深度融合所形成的"智慧材 料",更将深刻改变人类社会的未来。 智能材料:能感知、会响应、可变化 什么是智能材料(Smart Materials)? 冷劲松回溯了这一概念的发展历程。1989年,日本科学家首次提出智能材料的概念——能够感知环境变 化、作出判断、执行指令的新型材料。在他看来,人类自身就是最极致的智能材料系统:"人体拥有作 为传感器的皮肤神经、作为驱动器的肌肉组织、作为支撑结构的骨骼,甚至具备自我修复能力(伤口愈 合)。" 形状记忆合金:如心血管支架,加热后展开支撑血管; 磁致伸缩材料:用于超声换能器与微位移装置; 电流变/磁流变材料:可通过电场/磁场改变黏度,应用于汽车自适应减震器等; ...
从露西的石斧到三体“水滴”:一部300万年材料文明史
材料汇· 2025-08-15 15:39
Core Viewpoint - The article explores the evolution of materials throughout human history, highlighting key materials that have transformed civilization and speculating on future materials that could redefine human capabilities and experiences [2][10]. Group 1: Ancient and Stone Age: The Spark of Material Enlightenment (Approx. 3 million years ago - 3000 BC) - Flint was the first technological breakthrough, providing sharp edges comparable to modern surgical tools, marking the beginning of human capability to manipulate the environment [13]. - Bone needles were essential for creating clothing, enabling human migration and survival in various climates [14]. - Pottery represented a revolutionary storage method, allowing for the stable storage of food and the emergence of early urban civilizations [15]. - Chalcedony symbolized power and social hierarchy, as its rarity and processing difficulty defined social status [16]. Group 2: Industrial Revolution: The Carnival of Material Mass Production (1860s - Mid-19th Century) - The Bessemer converter revolutionized steel production, reducing the time to produce steel from 10 hours to just 10 minutes, significantly impacting railway construction [19]. - Celluloid emerged as a substitute for ivory, leading to innovations in billiard balls and film production, thus transforming entertainment [20]. Group 3: Electrical and Information Revolution: The Material Carriers of the Invisible World (Mid-19th Century - Early 21st Century) - Tungsten filaments provided a durable light source, extending the lifespan of light bulbs from 40 hours to over 1000 hours [23]. - Silicon chips became the cornerstone of the digital age, integrating billions of transistors into compact devices, enabling the modern computing era [24]. - Optical fibers revolutionized communication, allowing for high-speed data transmission over long distances with minimal signal loss [25]. - Aluminum alloys significantly improved aircraft design, enhancing performance and capacity [27]. Group 4: AI Era: The Awakening of Material Intelligence (Early 21st Century - Present) - Graphene, discovered through a simple method, exhibits extraordinary strength and conductivity, leading to innovations in flexible electronics and batteries [32]. - Shape memory alloys, capable of returning to a predetermined shape, are being utilized in medical devices and robotics [33]. - AI-driven material design is accelerating the discovery of new materials, exemplified by the identification of high-temperature superconductors [34][35]. Group 5: Future Materials: Breaking the Boundaries of Imagination (Mid-21st Century - 2300) - Biological steel, derived from genetically modified goats, offers lightweight and biodegradable alternatives for protective gear [39]. - Time crystals, maintaining oscillation even at absolute zero, promise unprecedented precision in timekeeping [40]. - Dark matter composite materials could enable anti-gravity technologies, drastically reducing travel times in space exploration [43]. - Space folding materials could revolutionize transportation, allowing large spacecraft to be compacted for launch and expanded in space [50]. - Biophotovoltaic materials could create self-sustaining buildings that generate energy through photosynthesis [52]. - Memory glass technology could transform architecture and personal devices, allowing surfaces to display information dynamically [55]. - Quantum entanglement materials could eliminate communication delays, enhancing global connectivity [57]. - Black hole composite materials could harness stellar energy, significantly increasing energy efficiency [60]. - Consciousness storage materials could redefine existence, allowing for digital immortality [62]. - Dimension folding materials could enable compact living spaces, revolutionizing urban design [64]. - Antimatter containment materials could facilitate interstellar travel, making distant worlds accessible [67]. - Probability crystals could provide insights into parallel universes, expanding the horizons of scientific inquiry [69].
未来40年材料革命:这13大领域将重塑人类文明!
材料汇· 2025-07-24 15:52
Metal Materials - The future focus is on breaking traditional alloy performance limits, evolving towards multifunctional integration and sustainable manufacturing [3] - The industry impact shifts from "structural support" to "functional load-bearing," with metal materials remaining the backbone of high-end equipment [4] Polymer Materials - Advanced high-strength lightweight alloys such as magnesium, aluminum, and titanium alloys achieve "weight reduction and efficiency increase" through nano-precipitation and texture control, with topology optimization and 3D printing of customized alloy components becoming mainstream after 2040 [5] - High-entropy alloys (HEAs) break traditional design thinking with the "cocktail effect," offering high strength, corrosion resistance, and radiation resistance, making them irreplaceable in nuclear reactors and deep-sea equipment [5] - Sustainable metallurgy, including hydrogen metallurgy technology, aims for a metal closed-loop recycling rate exceeding 90% by 2050, reshaping the carbon neutrality path for the steel industry [5] Ceramic Materials - The future focus is on overcoming brittleness to expand applications in energy and aerospace [11] - The industry impact highlights the irreplaceable role of ceramics in aerospace, nuclear energy, and semiconductors, with significant domestic substitution potential [12] Carbon Materials - The future focus is on the industrialization of two-dimensional materials and the rise of carbon-based electronics [15] - China holds 70% of global graphene patents, necessitating a faster transition from laboratory to factory [16] Composite Materials - Graphene is expected to achieve low-cost mass production after 2030, with applications in ultrafast sensors, flexible electrodes, and seawater desalination membranes [17] - Carbon nanotubes (CNTs) are candidates for lightweight conductive composites, replacing copper wires [17] - Carbon fiber (CFRP) supports new-generation domestic T1100-grade carbon fiber for large aircraft and hydrogen storage tanks [17] Advanced Materials - Fiber-reinforced resin-based composites (FRP) are key to automotive lightweighting, with carbon fiber costs projected to drop to $10/kg by 2050 [21] - Smart composite materials with embedded sensors enable structural health monitoring [21] Information Materials - The future focus is on supporting computational power explosion and quantum communication [27] - The industry impact directly influences China's chip discourse power in the "post-Moore era" [28] Energy Materials - The future focus is on enhancing energy conversion and storage efficiency [31] - Material costs account for 60% of new energy device expenses, making them critical for achieving carbon neutrality goals [32] Biomedical Materials - The future focus is on personalization and bioactivity [35] - The aging global population creates a trillion-dollar market, with biocompatibility evaluation being a core entry criterion [36] Environmental Materials - The future focus is on pollution control and resource recycling [39] - Environmental policies drive mandatory replacements, with green certification becoming a standard for exports [40] Building Materials - The future focus is on transforming from energy consumers to producers [43] - New materials are seen as breakthroughs for urban carbon neutrality, given that buildings consume 40% of global energy [44] Material Surface Engineering - The future focus is on nanotechnology and multifunctional integrated coatings [47] - The industry impact emphasizes the value of coatings in remanufacturing [48] Material Analysis and Evaluation - The future focus is on AI-driven material analysis combining high-throughput experiments, computational simulations, and AI [51] - The industry impact shifts from "trial and error" to "rational design," reshaping material R&D paradigms [52] Conclusion - Over the next 40 years, material innovation will showcase four main themes: green, intelligent, composite, and precise [54] - The transition from a "material power" to a "material strong power" in China depends on breakthroughs in original basic research, key equipment autonomy, and collaborative ecosystems [56]
新材料的时空奇遇:从火种到星尘的文明故事
材料汇· 2025-07-18 15:50
Core Viewpoint - The article explores the evolution of materials throughout human history, highlighting their significance in shaping civilization and technological advancements. Group 1: Ancient and Early Materials - The discovery of tools made from volcanic rock by early humans marks the beginning of material use in civilization [3] - Flint was used as a tool for cutting and creating fire, showcasing early human ingenuity in material manipulation [6] - The invention of pottery allowed for food storage and contributed to the development of early urban civilizations [7] - Jade, particularly in ancient cultures, symbolized power and status, reflecting the societal hierarchy based on material rarity and craftsmanship [8][9] Group 2: Industrial Revolution - The Bessemer process revolutionized steel production, significantly reducing the time required to produce steel and increasing its availability for infrastructure [12] - The invention of celluloid provided a sustainable alternative to ivory for billiard balls, leading to broader applications in film and photography [13] Group 3: Electrical and Information Revolution - The development of tungsten filaments in light bulbs greatly improved their longevity and efficiency, making electric lighting accessible to households [16] - The invention of silicon chips laid the foundation for modern computing, enabling the integration of billions of transistors on a single chip [17] - Optical fibers transformed communication by allowing high-speed data transmission over long distances, significantly enhancing global connectivity [18][19] Group 4: AI and Future Materials - Graphene, discovered in 2004, exhibits extraordinary strength and conductivity, paving the way for innovations in electronics and energy storage [25] - Shape memory alloys, such as nickel-titanium, have applications in medical devices and robotics due to their ability to return to a predetermined shape [26] - AI-driven material design is revolutionizing the development of new materials, enabling rapid identification of high-performance candidates for various applications [27][28] Group 5: Speculative Future Materials - Bio-steel, derived from genetically modified organisms, promises lightweight and strong materials for protective gear [32] - Time crystals, which maintain a stable oscillation state, could lead to advancements in precision timekeeping and quantum computing [34] - Dark matter composites may enable anti-gravity technologies, revolutionizing transportation and space exploration [35] Group 6: Conclusion - The article emphasizes the continuous evolution of materials as a reflection of human creativity and technological progress, suggesting that future innovations will further transform society [46]