腺相关病毒(AAV)
Search documents
直播预告:AAV实验高频问题拆解:从基础知识到实操应用
生物世界· 2025-11-17 04:04
Core Viewpoint - The article emphasizes the importance of adeno-associated virus (AAV) as a crucial tool for gene delivery in fields such as gene therapy and neuroscience, while addressing the challenges researchers face in the entire process from design to implementation [3][4]. Group 1: Course Announcement - An online course titled "AAV Experimental High-Frequency Issues Breakdown: From Basic Knowledge to Practical Application" will be held on November 20, focusing on 20 core challenges faced by researchers [4][6]. - The course will be led by experienced professionals from Saiye Biotechnology, including the AAV Gene Therapy Project Manager and an AAV Solution Design Engineer [6][8]. Group 2: Learning Outcomes - Participants will gain essential knowledge about AAV-mediated gene delivery mechanisms, selection principles for serotypes and promoters based on target tissues [6]. - The course will cover the applicability and limitations of different administration routes, as well as standardization strategies for virus titer and dosage [6]. - Attendees will learn multi-dimensional effect verification methods and troubleshooting approaches when experimental results are unsatisfactory [6]. Group 3: Company Background - Saiye Biotechnology, established in 2006, is a national high-tech enterprise and recognized as a "little giant" specializing in the life sciences sector, committed to supporting global life sciences with excellent models and services [16].
华人学者本周发表5篇Cell论文:AAV替代受体、低碳水饮食促癌、大脑实时指挥血液流动、pH调控炎症反应、甲状腺激素大脑转运
生物世界· 2025-07-19 07:01
Core Insights - The article highlights significant research published in the journal Cell, with a focus on studies led by Chinese scholars, covering various biological mechanisms and their implications for health and disease [2]. Group 1: Adeno-Associated Virus Research - A study identified an alternative receptor for adeno-associated viruses (AAV), named AAVR2, which can restore transduction in the absence of AAVR and provide a unique entry pathway for unclassified AAVs [4][6]. - The research suggests that overexpressing a minimal functional AAVR2 can enhance AAV transduction in vivo, allowing low doses of AAV to achieve similar therapeutic effects [6][8]. Group 2: Glucose Restriction and Tumor Metastasis - Research revealed that glucose restriction influences the pre-metastatic immune landscape in the lungs through exosomal TRAIL, suggesting a new mechanism of immune regulation [10][11]. - The study warns that extreme low-carbohydrate diets may inhibit tumor growth but could also promote lung metastasis, highlighting the need for careful evaluation of metabolic intervention strategies [11][13]. Group 3: Neurovascular Coupling - A study demonstrated that endothelial gap junction coupling enables rapid propagation of vasodilation during neurovascular coupling, crucial for meeting the brain's instantaneous energy demands [15][16]. - The findings indicate that the molecular composition of gap junctions varies along the arterial-venous axis, with the strongest connections found in the arterial segments [16][18]. Group 4: pH-Dependent Inflammatory Responses - Research uncovered how acidic environments during inflammation regulate immune responses through pH-dependent transcriptional condensates, identifying BRD4 condensates as pH sensors [20][21]. - The study suggests that pH acts not only as a byproduct of inflammation but also as an active regulator of the inflammatory response, providing new insights into chronic inflammation and autoimmune diseases [23]. Group 5: Thyroid Hormone Transport Mechanism - A study elucidated the structural mechanisms of thyroid hormone transport via MCT8 and OATP1C1, revealing their binding interactions with active thyroid hormones [25][26]. - The research highlights the importance of these transport mechanisms in development and disease, providing insights into the pathogenic mechanisms of related mutations [28].
北京大学发表最新Cell论文
生物世界· 2025-07-14 23:57
Core Viewpoint - The article discusses the discovery of an alternative receptor for adeno-associated viruses (AAV), named AAVR2, which enhances the efficacy of AAV-mediated gene therapy and provides insights into reducing dose-related toxicity associated with AAV vectors [3][8]. Group 1: AAV and Its Applications - AAV is currently the most commonly used vector for in vivo gene therapy, approved for treating various diseases such as retinitis pigmentosa, spinal muscular atrophy, Duchenne muscular dystrophy, and hemophilia [1]. - The clinical success of human gene therapies relies on the safe and effective transduction of AAV into various tissues [2]. Group 2: Research Findings - AAVR2 (CPD) was identified as an alternative receptor that can restore the transduction of E branch AAVs, including AAV8, in the absence of AAVR, and provides a unique entry pathway for unclassified AAV11 and AAV12 [3][6]. - The research team characterized the direct binding between AAV8 capsid and AAVR2 using cryo-electron microscopy, identifying the amino acid residues involved in the interaction [6][9]. - A minimal functional AAVR2 (miniAAVR2) was overexpressed to enhance in vivo AAV transduction, allowing low doses of AAV to achieve similar therapeutic effects [6][9]. Group 3: Implications for AAV Biology - This research provides new insights into AAV biology and offers clinically applicable solutions to mitigate dose-related toxicity associated with AAV vectors [8].