FlashAttention

Search documents
AI 编程冲击来袭,程序员怎么办?IDEA研究院张磊:底层系统能力才是护城河
AI前线· 2025-08-10 05:33
Core Insights - The article discusses the challenges and opportunities in the field of artificial intelligence, particularly focusing on the integration of visual understanding, spatial intelligence, and action execution in multi-modal intelligent agents [2][5][10]. Group 1: Multi-Modal Intelligence - The transition to a new era of multi-modal intelligent agents involves overcoming significant challenges in visual understanding, spatial modeling, and the integration of perception, cognition, and action [2][4]. - Achieving effective integration of language models, robotics, and visual technologies is crucial for the advancement of AI [5][9]. Group 2: Visual Understanding - Visual input is characterized by high dimensionality and requires understanding of three-dimensional structures and interactions, which is complex and often overlooked [6][7]. - The development of visual understanding is essential for robots to perform tasks accurately, as it directly impacts their operational success rates [7][8]. Group 3: Spatial Intelligence - Spatial intelligence is vital for robots to identify objects, assess distances, and understand structures for effective action planning [7][10]. - Current models, such as the visual-language-action (VLA) model, face challenges in accurately understanding and locating objects, which affects their practical application [8][9]. Group 4: Research and Application Balance - Researchers in the industrial sector must balance foundational research with practical application, focusing on solving real-world problems rather than merely publishing papers [12][14]. - The ideal research outcome is one that combines both research value and application value, avoiding work that lacks significance in either area [12][13]. Group 5: Recommendations for Young Professionals - Young professionals should focus on building solid foundational skills in computer science, including understanding operating systems and distributed systems, rather than solely on experience with large models [17][20]. - Emphasis should be placed on understanding the principles behind AI technologies and their applications, rather than just performing parameter tuning [19][20].
AI 编程冲击来袭,程序员怎么办?IDEA研究院张磊:底层系统能力才是护城河
AI前线· 2025-07-13 04:12
Core Viewpoint - The article discusses the challenges and opportunities in the development of multi-modal intelligent agents, emphasizing the need for effective integration of perception, cognition, and action in AI systems [1][2][3]. Multi-modal Intelligent Agents - The three essential components of intelligent agents are "seeing" (understanding input), "thinking" (processing information), and "doing" (executing actions), which are critical for advancing AI capabilities [2][3]. - There is a need to focus on practical problems with real-world applications rather than purely academic pursuits [2][3]. Visual Understanding and Spatial Intelligence - Visual input is complex and high-dimensional, requiring a deep understanding of three-dimensional structures and interactions with objects [3][5]. - Current models, such as the visual-language-action (VLA) model, struggle with precise object understanding and positioning, leading to low operational success rates [5][6]. - Achieving high accuracy in robotic operations is crucial, as even a small failure rate can lead to user dissatisfaction [5][8]. Research and Product Balance - Researchers in the industrial sector must balance between conducting foundational research and ensuring practical application of their findings [10][11]. - The ideal research outcome is one that combines both research value and application value, avoiding work that lacks significance in either area [11][12]. Recommendations for Young Professionals - Young professionals should focus on building solid foundational skills in computer science, including understanding operating systems and distributed systems, rather than solely on model tuning [16][17]. - The ability to optimize systems and understand underlying principles is more valuable than merely adjusting parameters in AI models [17][18]. - A strong foundation in basic disciplines will provide a competitive advantage in the evolving AI landscape [19][20].
清华SageAttention3,FP4量化5倍加速!且首次支持8比特训练
机器之心· 2025-06-18 09:34
Core Insights - The article discusses the advancements in attention mechanisms for large models, particularly focusing on the introduction of SageAttention3, which offers significant performance improvements over previous versions and competitors [1][2]. Group 1: Introduction and Background - The need for optimizing attention speed has become crucial as the sequence length in large models increases [7]. - Previous versions of SageAttention (V1, V2, V2++) achieved acceleration factors of 2.1, 3, and 3.9 times respectively compared to FlashAttention [2][5]. Group 2: Technical Innovations - SageAttention3 provides a 5x inference acceleration compared to FlashAttention, achieving 1040 TOPS on RTX 5090, outperforming even the more expensive H100 with FlashAttention3 by 1.65 times [2][5]. - The introduction of trainable 8-bit attention (SageBwd) allows for training acceleration while maintaining the same results as full precision attention in various fine-tuning tasks [2][5]. Group 3: Methodology - The research team employed Microscaling FP4 quantization to enhance the precision of FP4 quantization, utilizing NVFP4 format for better accuracy [15][16]. - A two-level quantization approach was proposed to address the narrow range of scaling factors for the P matrix, improving overall precision [15][16]. Group 4: Experimental Results - SageAttention3 demonstrated impressive performance in various models, maintaining end-to-end accuracy in video and image generation tasks [21][22]. - In specific tests, SageAttention3 achieved a 3x acceleration in HunyuanVideo, with significant reductions in processing time across multiple models [33][34].
Mamba核心作者新作:取代DeepSeek在用的注意力机制,专为推理打造
量子位· 2025-06-01 03:40
Core Insights - The article discusses a new research paper by Tri Dao and his team from Princeton University, introducing two attention mechanisms specifically designed for inference, which significantly enhance decoding speed and throughput while maintaining model performance [1][2][5]. Summary by Sections Introduction of New Attention Mechanisms - The research presents two novel attention mechanisms: Grouped-Tied Attention (GTA) and Grouped Latent Attention (GLA), which optimize memory usage and computational logic during model inference [2][8]. - GTA reduces KV cache usage by approximately 50% compared to the existing GQA mechanism, while GLA offers faster decoding speeds than the MLA mechanism, sometimes up to 2 times faster than FlashMLA [2][11][36]. Mechanism Details - GTA combines and reuses the key and value states of different query heads, reducing memory transfer frequency and improving efficiency [15][16]. - GLA employs a dual-layer structure to enhance hardware efficiency and maintain parallel scalability, optimizing decoding speed without sacrificing model performance [17][18]. Experimental Results - Experiments were conducted on models of various sizes (small, medium, large, and XL) using the FineWeb-Edu-100B dataset, demonstrating that GTA outperforms GQA in larger models, while GLA matches MLA performance [21][22]. - The results indicate that both GTA and GLA can maintain or improve performance as model size increases, validating their effectiveness as alternatives to GQA and MLA [24][36]. Performance Metrics - The study evaluated performance using perplexity and downstream task accuracy across several benchmarks, showing that GTA and GLA maintain competitive performance while reducing KV cache requirements [26][27]. - GLA demonstrated superior throughput in real-time server performance tests, especially under concurrent request scenarios, indicating its efficiency in handling long contexts [30][33].
大模型 “注意力简史”:与两位 AI 研究者从 DeepSeek、Kimi 最新改进聊起
晚点LatePost· 2025-03-02 06:10
嘉宾 丨 肖朝军、傅天予 整理 丨 程曼祺 上周,DeepSeek、Kimi 都放出了新的大模型架构改进和优化成果,分别是 NSA、MoBA。二者都聚焦对大 模型中 "注意力机制" 的改进。 o 1 、 R 1 等 推 理 模 型 的 出 现,给 了 长 文 本 新 课 题 。 注意力机制是当前大语言模型(LLM)的核心机制。2017 年 6 月那篇开启大语言模型革命的 Transformer 八 子论文,标题就是:Attention Is All You Need(注意力就是你所需要的一切)。 而优化 Attention 的计算效率和效果,又能帮助解决 AI 学界和业界都非常关心的一个问题,就是长文本(long context)。 不管是要一次输入一整本书,让模型能帮我们提炼、理解;还是在生成现在 o1、R1 这类模型需要的长思维 链;又或者是希望模型未来能有越来越长的 "记忆",这都需要长文本能力的支持。 这期节目我们邀请了两位做过 Attention 机制改进的 AI 研究者做嘉宾。 一位是清华计算机系自然语言处理实验室的博士生肖朝军,他是 InfLLM 注意力机制改进的一作,导师是清华 计算机系副教授 ...