Workflow
HumanOmniV2
icon
Search documents
阿里多模态推理模型开源!精准捕捉视频隐藏信息,三大杀手锏让AI更懂“人情世故”
Sou Hu Cai Jing· 2025-07-09 00:28
智东西 编译 | 程茜 编辑 | 心缘 AI能听懂你的"话外音"了? 智东西7月8日消息,近日,阿里通义实验室开源多模态推理模型HumanOmniV2。 HumanOmniV2通过引入强制上下文总结机制、大模型驱动的多维度奖励体系,以及基于GRPO的优化训练方法,实现了对多模态信息的全面理解,使得模 型不会错过图像、视频、音频中的隐藏信息,一定程度上规避其在全局上下文理解不足和推理路径简单上的问题。 如在生成最终答案前,模型会输出一个标签内的上下文概括,系统性分析多模态输入内容中的视觉、听觉、语音信号,为后面的推理过程提供依据。如下图 提问"女人为什么翻白眼",HumanOmniV2基于视频、音频等信息给出正确答案"她的翻白眼更像是对一个潜在敏感话题的夸张、俏皮的反应,非对其他人表 示不满"。 现阶段HumanOmniV2已开源。阿里通义团队还推出包含633个视频和2689个相关问题的评测基准IntentBench,在此之上,HumanOmniV2准确率达到 69.33%。 Hugging Face:https://huggingface.co/PhilipC/HumanOmniV2 IntentBench评 ...
腾讯研究院AI速递 20250709
腾讯研究院· 2025-07-08 15:50
Group 1 - Ruoming Pang, head of Apple's foundational model team, is reported to join Meta's new AI team with an annual compensation in the tens of millions [1] - Pang's departure may be influenced by internal discussions at Apple regarding the introduction of third-party models like OpenAI, leading to team morale issues [1] - Apple's AI team structure will be reorganized under Zhifeng Chen, transitioning to a multi-layer management structure [1] Group 2 - Microsoft has launched Deep Research, a public preview version that utilizes the o3 model and Bing search to create an advanced AI research tool [2] - This AI can automatically deconstruct complex problems, gather the latest authoritative information from the web, and generate auditable research reports [2] - An API interface has been opened for integration into applications, supporting enterprise-level AI platforms across various fields such as research, finance, and healthcare [2] Group 3 - Alibaba has open-sourced the multi-modal reasoning model HumanOmniV2, capable of accurately capturing hidden information in videos and understanding "subtext" [3] - The model incorporates a forced context summarization mechanism, a multi-dimensional reward system driven by large models, and optimization training methods based on GRPO [3] - Alibaba has introduced the IntentBench evaluation benchmark, with HumanOmniV2 achieving an accuracy rate of 69.33%, excelling in understanding complex human intentions [3] Group 4 - PaddleOCR 3.1 has been released, with Wenxin 4.5 enhancing the accuracy of text recognition in 37 languages by over 30%, supporting high-quality automatic data labeling [4] - A new production line, PP-DocTranslation, has been added, combining PP-StructureV3 and Wenxin 4.5 to support translation of Markdown, PDF, and image documents, along with customization of professional terminology [4] Group 5 - A controversy has emerged involving hidden instructions in academic papers aimed at inducing AI to give high scores, with several top universities implicated [6] - Xie Saining, a co-author of one such paper, acknowledged responsibility and apologized, clarifying that he does not endorse such practices [6] - This incident has sparked discussions on academic ethics in the AI era, highlighting the lack of unified standards in AI review processes and the need for reform [6] Group 6 - The Visual Language Action model (VLA) is becoming a core technology for embodied intelligence by 2025, with rapid iterations from Google's RT-2 breakthrough [7] - China's Zhihui Square has partnered with top universities to launch FiS-VLA, innovatively embedding "fast systems" into "slow systems" to address the trade-off between robotic control efficiency and reasoning capability [7] - FiS-VLA has achieved an 8% success rate improvement in simulation tasks and an 11% improvement in real environments, with a control frequency of 21.9Hz, 1.6 times that of the open-source model π0 [7] Group 7 - YouTube co-founder Chen Shijun discussed AI entrepreneurship and long-termism with the Manus team, emphasizing the value of rapid experimentation and risk-taking [8] - Recommendations for AI startups include leveraging first-mover advantages to retain users, creating compound network effects, and exploring areas that larger companies avoid, all within legal boundaries [8] - Key decisions at YouTube included prioritizing user growth over immediate monetization, establishing transparent core metrics, and developing a creator-friendly advertising model while focusing on the "passive experience" of recommendation systems [8] Group 8 - The key shift in acquiring users for AI products is that if a product does not generate social engagement within the first 48 hours, it may fail, making virality a survival threshold rather than a bonus [9] - The success story of selling Base44 for $80 million involved user participation in the development process, encouraging sharing of creations, and strategically choosing LinkedIn as a platform for dissemination, creating a closed loop of development, showcasing, and sharing [9] - The distribution paradigm for AI startups is evolving, with product development becoming a public showcase, niche native creators proving more effective than influencers, and growth metrics becoming assets for dissemination, shifting from "closed-door development" to "public collaboration" [9] Group 9 - U.S. universities are reshaping computer science education, with the CS major potentially becoming more humanities-oriented, emphasizing computational thinking and AI literacy over traditional programming skills [10] - The "Level Up AI" initiative has launched an 18-month curriculum overhaul, where future programming languages may involve "Human," allowing students to complete programming tasks through interaction with AI [10] - Traditional humanities classrooms are facing assessment crises, with educators struggling to identify AI-generated content, leading to a return to handwritten assignments and the development of anti-cheating systems, raising concerns about students' over-reliance on AI affecting their cognitive abilities [10]
突破全模态AI理解边界:引入上下文强化学习,赋能全模态模型“意图”推理新高度
量子位· 2025-07-08 07:30
HumanOmniV2团队 投稿 量子位 | 公众号 QbitAI 在多模态大语言模型(MLLMs)应用日益多元化的今天,对模型深度理解和分析人类意图的需求愈发迫切。尽管强化学习(RL) 在增强大语言模型(LLMs)的推理能力方面已展现出巨大潜力,但将其有效应用于复杂的多模态数据和格式仍面临诸多挑战。 在深入研究现有技术后,发现在当前多模态推理模型中发现现有的推理路径存在两大核心问题:全局上下文理解不足和捷径问题。 全局上下文理解不足: 当模型无法准确识别或错误解读多模态证据和上下文信息时,便会出现此问题,导致给出不正确的答案。 捷径问题: 指模型在处理多模态输入时,忽视了关键线索,未充分考量多模态信息就直接给出答案,从而导致次优或片面的结果 为彻底解决这些痛点,阿里巴巴通义实验室团队推出 HumanOmniV2 ,强调模型必须在对多模态输入 全局上下文有清晰理解 的 基础上进行推理。这种全局性理解能够有效避免模型遗漏关键多模态线索,确保推理过程的全面性和深入性。 相关代码、模型、数据都开源,地址可在文末获取。 效果展示 问题:这两个人是什么关系? A. 他们想引起人们对该产品的关注。 B. 这两个人是商业伙 ...