LIBERO
Search documents
RLINF-VLA:一种用于 VLA+RL 训练的统一高效框架
具身智能之心· 2025-10-22 06:02
Core Insights - The article presents the RLinf-VLA framework, a unified and efficient framework for training Visual-Language-Action (VLA) models using Reinforcement Learning (RL), addressing the limitations of existing models that rely on supervised fine-tuning [2][53] - The framework significantly enhances training efficiency and generalization capabilities, achieving high success rates in various simulation tasks and demonstrating superior performance in real-world applications compared to traditional supervised methods [5][53] Framework Design - The RLinf-VLA framework integrates multiple simulators, algorithms, and VLA architectures, optimizing resource allocation through flexible execution modes and system-level enhancements [4][53] - It supports three GPU allocation strategies: colocated, disaggregated, and hybrid, allowing users to easily switch modes via configuration files, thus reducing system customization costs [10][11] Model Compatibility - The framework supports LoRA for efficient parameter tuning, reducing memory consumption and accelerating training while maintaining performance [12] - It is compatible with OpenVLA and its extension OpenVLA-OFT, which have shown strong performance in various robotic operation benchmarks [12][22] Multi-Simulator Support - The framework emphasizes the importance of simulators in RL, utilizing ManiSkill and LIBERO as primary simulators to achieve diverse task capabilities [13] - It provides a unified interface for different simulators, facilitating the implementation of various tasks and supporting multiple RL algorithms, initially focusing on PPO and GRPO [13][14] Algorithm Design - The framework incorporates advanced techniques for advantage function and log-probability calculations, allowing for flexible integration of block-level and action-level definitions [14][15] - It supports various optimization strategies, including trajectory length normalization and effective action masking, to enhance training stability and performance [19][20] Experimental Results - The RLinf-VLA framework demonstrated significant performance improvements, with success rates increasing by 45% to 70% in various tasks compared to baseline models [22][24] - In LIBERO tasks, the framework achieved an average success rate of 98.11%, showcasing its capability for large-scale multi-task reinforcement learning [28] High Efficiency Performance - The framework's efficiency is evaluated based on throughput, achieving substantial improvements in training speed across different GPU configurations [30][35] - The hybrid allocation mode outperformed traditional methods, demonstrating the benefits of pipeline overlapping in resource utilization [35][37] Real-World Deployment - The RLinf-VLA framework was successfully deployed in real-world environments, showing superior zero-shot generalization capabilities compared to supervised fine-tuning strategies [51][53] - The experiments indicated that RL-trained models could adapt better to real-world tasks, achieving higher success rates in object manipulation tasks [51] Conclusion - The RLinf-VLA framework represents a significant advancement in the field of embodied intelligence, providing a robust foundation for future research and development in VLA training [53]
统一高效VLA+RL训练平台RLinf-VLA!
具身智能之心· 2025-10-13 00:02
Core Insights - The article discusses the launch of RLinf, a large-scale reinforcement learning framework aimed at embodied intelligence, highlighting its flexibility and efficiency in system design [2][3]. Group 1: System Design - RLinf-VLA provides a unified and efficient platform for VLA+RL research, achieving a throughput improvement of 2.27 times compared to baseline platforms [2][5]. - It supports multiple simulators (LIBERO and ManiSkill), allowing for integrated training across different environments [5]. - The system allows for easy switching between various VLA models and RL algorithms, reducing the workload for model adaptation [5]. Group 2: Performance Overview - A single unified model achieved a success rate of 98.11% across 130 tasks in LIBERO and 97.66% in 25 pick & place tasks in ManiSkill [6]. - The RLinf-VLA framework demonstrates superior zero-shot generalization capabilities when deployed on real robotic systems compared to strategies trained with SFT [6][45]. Group 3: Algorithm Design - The framework introduces several design optimizations, including lightweight critics and trajectory length normalization, which significantly enhance training efficiency [9][21][25]. - It supports three levels of output granularity (token-level, action-level, chunk-level) for both advantage and log-probability calculations, allowing for flexible training strategies [12][14][22]. Group 4: Experimental Results - In multi-task experiments, the OpenVLA model showed performance improvements of 45% to 70% over baseline models in ManiSkill tasks [31]. - The RLinf-VLA framework demonstrated high efficiency in training, with significant reductions in training time compared to baseline methods [43][44]. Group 5: Real-World Application - The RLinf-VLA framework was successfully deployed on the Franka Panda robotic arm, showcasing its ability to generalize from simulation to real-world tasks [45].
VLA-Adapter:以0.5B参数实现机器人智能新高度,还无需预训练
具身智能之心· 2025-09-17 03:14
Core Viewpoint - The VLA-Adapter model, developed by leading institutions, represents a revolutionary breakthrough in the Vision-Language-Action (VLA) model for robotics, offering a lightweight design with 500 million parameters while achieving performance comparable to larger models, thus lowering the barriers for training and deployment in robotic applications [4][11][30]. Summary by Sections Introduction to VLA-Adapter - The VLA-Adapter model has been jointly developed by top institutions and is designed to enhance the efficiency and intelligence of robots in understanding environments and executing tasks [4][11]. Challenges in VLA Models - Traditional VLA models face challenges such as reliance on large-scale pre-trained models and high computational costs, which hinder practical applications [3][11]. VLA-Adapter's Innovations - VLA-Adapter introduces a new bridging paradigm that efficiently transmits multimodal information to the action space, significantly reducing model size and training costs [11][12]. - The model utilizes a lightweight backbone network with only 0.5 billion parameters, achieving performance comparable to 7 billion parameter models without requiring extensive pre-training on robotic datasets [11][12]. Key Technologies - The innovative Bridge Attention mechanism is crucial for VLA-Adapter's success, allowing efficient connection between visual-language representations and action generation [12][14]. - The model's training efficiency is highlighted by its ability to complete training in just 8 hours on a single consumer-grade GPU, compared to traditional models that may take days or weeks [15][19]. Experimental Validation - VLA-Adapter has demonstrated superior performance in various robotic tasks, achieving an average success rate of 97.3% in the LIBERO benchmark, outperforming several baseline models [19][20]. - In zero-shot generalization tasks, VLA-Adapter achieved an average task completion length of 4.42, indicating strong adaptability to unseen environments [21][22]. Real-World Applications - The model has shown robust performance in real-world tasks, including complex operations with a 6-DOF robot, demonstrating its potential for diverse applications in industrial automation, smart homes, and medical assistance [23][28]. Future Potential - VLA-Adapter's lightweight design and high efficiency position it as a promising solution for real-time applications, facilitating the development and deployment of VLA models by smaller research institutions and companies [28][30].
从坐标混乱到时空对齐!诺亚和复旦联合提出4D-VLA,提升机器人预训练效率和稳健性
具身智能之心· 2025-07-06 11:54
Core Insights - The article introduces 4D-VLA, a new pretraining method that integrates 3D spatial and historical frame data to enhance model performance in complex scenarios, addressing the limitations of traditional single-frame RGB and text inputs [4][10][18]. Group 1: Limitations of Existing Paradigms - Current mainstream methods like OpenVLA rely solely on single-frame RGB images and text instructions, leading to chaotic target distributions and slow model convergence due to high variance [7][8]. - The lack of complete input information results in significant challenges, such as coordinate system chaos and state chaos, which severely degrade pretraining efficiency [5][9]. Group 2: Proposed Solutions - 4D-VLA utilizes depth maps and camera extrinsics to project each pixel into world coordinates, embedding 3D positional encoding to align visual tokens with robot coordinates, thus reducing ambiguity in coordinate systems [10][18]. - The method includes a controlled experiment to quantify the impact of coordinate chaos on VLA models, demonstrating that the introduction of 3D information significantly improves model robustness and convergence speed [11][17]. Group 3: Experimental Setup and Results - The DROID dataset, comprising 76,000 human demonstration trajectories across various tasks, serves as the foundation for pretraining, while the LIBERO simulation suite is used for downstream evaluation [29][30]. - 4D-VLA outperforms existing methods in various tasks, achieving an average success rate of 88.6% across different evaluation settings, showcasing its superior capability in spatial awareness and generalization [33][39]. Group 4: Real-World Evaluation - In real-world tests, 4D-VLA demonstrated enhanced precision and robustness in tasks involving spatial generalization, robustness to distractors, precise placement, and structured instruction execution [44][49]. - The model maintained high success rates even under unseen camera angles, indicating its ability to adapt to new environments and conditions effectively [57][58].