Workflow
LangGraph
icon
Search documents
Build a Streaming LangChain Agent in Next.js with useStream
LangChain· 2025-11-06 17:45
Hi there, this is Christian from Langchain. Just a couple of weeks ago, we released version one of Langchain and Lang Graph. And one of the cool features of it is that it makes it really easy to stream events and results from the agent down to any type of front end that you're using, whether it's React, Vue, or Swelt.So, in this video, I want to build a little CHPT clone that shows you how you can build and create agent right in your Nex. js application. Every longchain agent maintains a state throughout it ...
LangChain 彻底重写:从开源副业到独角兽,一次“核心迁移”干到 12.5 亿估值
AI前线· 2025-10-25 05:32
Core Insights - LangChain has completed a $125 million funding round, achieving a post-money valuation of $1.25 billion, marking its status as a unicorn [3] - The company has released a significant update with LangChain 1.0, which is a complete rewrite of the framework after three years of iterations [3][4] - LangChain is one of the most popular projects in the open-source developer community, with 80 million downloads per month and millions of developers actively using it [3] Development Background - LangChain was initiated in October 2022 by machine learning engineer Harrison Chase as a side project, initially consisting of about 800 lines of code [5] - The project was inspired by the fragmented tools and lack of abstraction in the AI development landscape, leading to the creation of a framework that connects models with tools [6] Evolution of LangChain - The framework has evolved from a simple integration tool to a comprehensive application framework, focusing on context-aware reasoning [9] - LangChain's architecture includes a component and module layer, as well as an end-to-end application layer, allowing developers to quickly build applications with minimal code [9][10] Challenges and Solutions - The team faced numerous issues, including a backlog of around 2,500 unresolved problems and user feedback regarding the need for greater control and customization [11] - To address these challenges, LangChain introduced LangGraph, which allows developers to manage agent logic more flexibly and supports long-running tasks [12][13] Key Features of LangChain 1.0 - The new version emphasizes controllability and built-in runtime capabilities, allowing for persistent execution environments and checkpoint recovery [16][27] - A middleware concept has been introduced, enabling developers to insert additional logic into the core agent loop, enhancing extensibility and customization [25][30] - The framework now supports dynamic model selection based on context, allowing for better optimization between capabilities and costs [26][27] Future Directions - LangChain's product lines focus on scaling the open-source ecosystem, enhancing the integration development environment for LangGraph, and improving the scalability of LangSmith [13] - The company aims to maintain its position at the forefront of AI development by providing flexibility and options for developers in a rapidly evolving landscape [26]
速递|开源Agent框架开发商LangChain完成1.25亿美元融资,估值突破12.5亿美元
Z Potentials· 2025-10-24 08:18
Core Insights - LangChain announced a successful funding round of $125 million, achieving a valuation of $1.25 billion [2][5] - The company, which focuses on developing an open-source framework for AI agents, was founded in 2022 and has quickly gained popularity among developers [3][5] Funding Details - The latest funding round was led by IVP, with new investors CapitalG and Sapphire Ventures joining existing backers such as Sequoia Capital, Benchmark, and Amplify [3][5] - LangChain's valuation increased from $200 million after a $25 million Series A round led by Sequoia Capital [5] Product Development - LangChain has evolved into a platform for building AI agents, launching significant upgrades to its core products, including the LangChain agent-building tool, LangGraph for orchestration and context/memory, and LangSmith for testing and observability [5] - The company maintains high popularity among open-source developers, boasting 118,000 stars and 19,400 forks on GitHub [6]
速递|前Scale AI员工创业,AI协调平台1001 AI种子轮获900万美元,掘金中东北美关键实体产业
Z Potentials· 2025-10-22 02:38
Group 1 - LangChain, an open-source AI agent framework developer, has achieved a valuation of $1.25 billion after completing a $125 million funding round [2] - The funding round was led by IVP, with new investors CapitalG and Sapphire Ventures joining existing investors such as Sequoia Capital, Benchmark, and Amplify [2] - LangChain was founded in 2022 by Harrison Chase and has quickly gained popularity for addressing challenges in building applications using early large language models (LLMs) [2][3] Group 2 - The company has evolved into a platform for building intelligent agents, launching a comprehensive upgrade of its core products, including LangChain, LangGraph, and LangSmith [3] - LangChain maintains high popularity among open-source developers, boasting 118,000 stars and 19,400 forks on GitHub [3]
LangChain 不看好 OpenAI AgentKit:世界不需要再来一个 Workflow 构建器
Founder Park· 2025-10-15 05:26
Core Viewpoint - OpenAI's AgentKit is a comprehensive toolset for developers and enterprises, but it is critiqued for being a visual workflow builder rather than a true agent builder, lacking the necessary autonomy and predictability for complex tasks [2][3][10]. Group 1: Purpose and Functionality - The primary goal of low-code workflow builders is to enable non-technical users to create agents independently, reducing reliance on engineering teams [7]. - Visual workflow builders, including OpenAI's AgentKit, are fundamentally workflow builders and not true agents, which limits their effectiveness in handling complex tasks [10]. Group 2: Differences Between Workflows and Agents - Workflows are characterized by fixed processes with complex branching logic, while agents operate with simplified logic abstracted into natural language, allowing for more autonomous decision-making [8][9]. - The trade-off between predictability and autonomy is crucial; workflows sacrifice autonomy for predictability, whereas agents do the opposite [8]. Group 3: Challenges of Visual Workflow Builders - Visual workflow builders face challenges due to limited engineering resources in many companies, making it difficult to meet all technical demands [12]. - Non-technical users often have a clearer understanding of the agents they need, which complicates the development of effective visual workflow tools [12]. Group 4: Solutions for Different Complexity Levels - For high-complexity scenarios, a code-based workflow is necessary to ensure reliability, as these situations often require intricate workflows with multiple branches and parallel processing [14]. - In low-complexity scenarios, simple agents (Prompt + tools) can reliably address issues, and building these agents without code is simpler than creating workflows [16]. Group 5: Future Directions - The industry does not need more workflow builders; instead, the focus should be on enabling users to easily create stable and reliable agents without code [22]. - Optimizing code generation models to better assist in writing LLM-driven workflows and agents is a key area for future development [23].
LangChain Academy New Course: Deep Agents with LangGraph
LangChain· 2025-09-18 15:56
Anthropic's Claude Code, OpenAI's Deep Researcher, and Manus's general purpose agent have demonstrated that agents can be amazingly effective on complex, long-running tasks. We call these Deep Agents because they have a few key differentiators from earlier forms of agents. In our new LangChain Academy course, Deep Agents with LangGraph, you'll learn their key characteristics and how to implement them in your own Deep Agent.So what makes these agents different. Under the hood, they use a simple ReAct tool-ca ...
LangChain 推出开源异步编码智能体 Open SWE
AI前线· 2025-08-23 05:32
Core Viewpoint - LangChain has launched Open SWE, an open-source asynchronous coding agent designed to run in the cloud and handle complex software development tasks, marking a shift from real-time "co-pilot" assistants to more autonomous agents integrated into developers' workflows [2][3]. Group 1: Functionality and Features - Open SWE connects directly to GitHub repositories, allowing developers to assign tasks via GitHub Issues or a dedicated UI, enabling the agent to research codebases, generate detailed plans, write and test code, review, and open pull requests upon completion [2]. - The tool is designed to manage long contexts and long-term tasks, operating in a secure, isolated Daytona sandbox that allows the agent to execute shell commands without compromising the host environment [2]. - Open SWE emphasizes human control, allowing developers to interrupt the agent mid-task, request changes, or provide new instructions without needing to restart the process [3]. Group 2: Architecture and Quality Assurance - The multi-agent architecture of Open SWE, consisting of Manager, Planner, Programmer, and Reviewer, is crucial for generating high-quality code, with the Reviewer checking outputs for errors before any pull requests are created [3]. - The platform is built on LangGraph, optimized for long-running agents, providing persistence, scalability, and deployment flexibility [5]. Group 3: Community and Feedback - Open SWE is now available on GitHub, offering complete documentation for developers looking to extend, customize prompts, or integrate it into internal systems, positioning the project as both a production-ready assistant and a foundation for community innovation [7]. - Early reactions have been mixed, with some users expressing skepticism about the capabilities of LangChain and its ecosystem, indicating potential concerns about the reliability of the technology [6].
最新Agent框架,读这一篇就够了
自动驾驶之心· 2025-08-18 23:32
Core Viewpoint - The article discusses various mainstream AI Agent frameworks, highlighting their unique features and suitable application scenarios, emphasizing the growing importance of AI in automating complex tasks and enhancing collaboration among agents [1]. Group 1: Mainstream AI Agent Frameworks - Current mainstream AI Agent frameworks are diverse, each focusing on different aspects and applicable to various scenarios [1]. - The frameworks discussed include LangGraph, AutoGen, CrewAI, Smolagents, and RagFlow, each with distinct characteristics and use cases [1][2]. Group 2: CrewAI - CrewAI is an open-source multi-agent coordination framework that allows autonomous AI agents to collaborate as a cohesive team to complete tasks [3]. - Key features of CrewAI include: - Independent architecture, fully self-developed without reliance on existing frameworks [4]. - High-performance design focusing on speed and resource efficiency [4]. - Deep customizability, supporting both macro workflows and micro behaviors [4]. - Applicability across various scenarios, from simple tasks to complex enterprise automation needs [4][7]. Group 3: LangGraph - LangGraph, created by LangChain, is an open-source AI agent framework designed for building, deploying, and managing complex generative AI agent workflows [26]. - It utilizes a graph-based architecture to model and manage the complex relationships between components in AI workflows [28]. Group 4: AutoGen - AutoGen is an open-source framework from Microsoft for building agents that collaborate through dialogue to complete tasks [44]. - It simplifies AI development and research, supporting various large language models (LLMs) and advanced multi-agent design patterns [46]. - Core features include: - Support for agent-to-agent dialogue and human-machine collaboration [49]. - A unified interface for standardizing interactions [49][50]. Group 5: Smolagents - Smolagents is an open-source Python library from Hugging Face aimed at simplifying the development and execution of agents with minimal code [67]. - It supports various functionalities, including code execution and tool invocation, while being model-agnostic and easily extensible [70]. Group 6: RagFlow - RagFlow is an end-to-end RAG solution focused on deep document understanding, addressing challenges in data processing and answer generation [75]. - It supports various document formats and intelligently identifies document structures to ensure high-quality data input [77][78]. Group 7: Summary of Frameworks - Each AI Agent framework has unique characteristics and suitable application scenarios: - CrewAI is ideal for multi-agent collaboration and complex task automation [80]. - LangGraph is suited for state-driven multi-step task orchestration [81]. - AutoGen is designed for dynamic dialogue processes and research tasks [86]. - Smolagents is best for lightweight development and rapid prototyping [86]. - RagFlow excels in document parsing and multi-modal data processing [86].
LangChain Academy New Course: Deep Research with LangGraph
LangChain· 2025-08-14 16:08
Course Overview - LangChain Academy launches "Deep Research with LangGraph" course, teaching users to build deep research agents from scratch [1] - The course focuses on multi-agent architecture and prompting techniques to improve performance and decision-making insights [2] - Participants will learn to build agents that interact with users, access tools, and manage multiple research agents [6] - The course emphasizes using LangSmith for observability and evaluation of agent components during development and deployment [5][7] Technological Focus - LangGraph, an agent orchestration framework, is highlighted for its suitability in building structured agentic applications [4] - The framework's built-in persistence layer is beneficial for tracking progress of multiple agents over extended periods [5] - Context engineering techniques are recommended to improve research results, such as focusing researchers on specific areas [3][4] Industry Application - Deep research is identified as a popular agent application, with major AI labs developing their own comprehensive report-generating products [2] - Companies are increasingly building their own deep research agents for use cases requiring high agency and decision-making [3] - The course aims to provide a working deep research agent adaptable to various user needs and use cases [7][8]
Getting Started with LangChain Education
LangChain· 2025-08-14 05:51
Educational Offerings - LangChain Education provides various learning methods, including courses, YouTube videos, and documentation [1] - LangChain Academy offers three types of courses: Foundational, Project, and Quickstart [1] Course Types - Foundational courses offer methodical learning from introduction to mastery and require more time to complete [2] - Project courses guide users through building specific projects, such as a Deep Research agent, and can typically be completed in a few hours [2] - Quickstart courses provide a quick introduction or review of a topic [2] Additional Resources - LangChain publishes educational videos on YouTube covering current topics, product features, and in-depth series [3] - LangChain provides extensive documentation with examples and step-by-step instructions [3]