Workflow
StableDiffusion
icon
Search documents
我和AI谈恋爱,我用AI留住“爸爸”,我被AI论文搞崩溃……
3 6 Ke· 2026-01-04 11:44
智能体元年、人工智能规模应用元年、具身智能元年……2025年,是AI全方位进入生活的元年。 2025年,AI带来了技术进步,但同时也引发了集体焦虑。有些改变已经发生并改变了数百万人的生活,有些担忧正在蔓延但尚未成为现实,有些恐惧则 被过度放大。 当社会在被技术彻底重塑,并加速向新的文明跃迁时,冲突不可避免。 《IT时报》盘点了2025年因AI而引发的十类冲突,那些身在其中的人,和我们讲述了这一年发生在他们身上的故事。 生产力冲突,算力"贫富差距下"的机会鸿沟 算力时代,行业的竞争格局发生了深刻变化。大厂凭借庞大的资金和技术资源,牢牢掌握了高端模型和算力的主导权,从而大幅提升了生产力。 另一面,很多中小创业公司面临着前所未有的压力:在算力和资金的对决中,如何在大厂的阴影下生存?很多创业公司选择了一个大厂不愿意下场,但用 户确实有强需求的缝隙,而目标就是在这种缝隙里,尽可能跑得久一点。 没有稳定的算力投入,服装设计就做不下去了 吴亮 服装设计师 我之前在传统服装行业做了几年服装设计师,后来进入某海外互联网大厂,真正进来之后才发现,这已经不是"换一家公司",而是换了一整套工作体系。 在传统服装公司,设计是典型的人力 ...
【七彩虹教育】最好用的AI是什么?语音助手?大语言模型?文生图?
Sou Hu Cai Jing· 2025-07-15 13:37
Group 1 - The recent years have seen a small explosion in artificial intelligence, with various tools for voice recognition, meeting summaries, and interactive text models emerging, as well as image generation technologies like Midjourney and StableDiffusion [1] - There is a growing sentiment that these AI tools may not be as user-friendly as initially thought, which can be analyzed through the basic unit of "information" [3] Group 2 - In terms of voice, humans can understand speech at a rate of approximately 150 to 200 words per minute, equating to about 1600 bits of information per minute [4] - For images, a person can theoretically process about 189 MB of image information per minute, assuming one image of 1024x1024 pixels is understood per second [6] - The average reading speed for text is estimated at 250 to 300 words per minute, resulting in an information flow of about 10,000 bits per minute [8][9] Group 3 - Overall, the information transmission capacity is ranked as follows: voice has the least information content at 1600 bits per minute, text is in the middle at 10,000 bits per minute, and images have the highest capacity at 189 MB per minute [11] - AI applications in voice recognition and generation have reached or exceeded human levels, with tools like CosyVoice and SenseVoice performing well [11] - Text-based AI models, particularly after the advent of ChatGPT, are also approaching human-level performance, with models like QWen2 achieving top-tier status [11] - However, image generation and recognition still lag behind, primarily due to the significantly higher information content in images compared to voice and text [11]