Workflow
4D自动标注
icon
Search documents
正式结课!动静态/OCC/端到端自动标注一网打尽
自动驾驶之心· 2025-08-25 03:15
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 智能技术泛化的引擎 - 自动标注 今年以来,业内各家智驾企业投入自动标注的人力和物力明显加大。智能驾驶泛化进入深水区,端到端量产以来也对统一场景下的自动标注要求越来越高。动态标 注、静态标注、OCC标注、端到端标注怎么做?数据质检如何高效运转?未来又有哪些发展方向,这全都是非常实际的工程问题! 为此平台打造了《自动驾驶4D标注 就业小班课》,目前已经正式结课! 课程详细介绍了动静态、OCC和端到端自动化标注的全流程以及量产实际遇到的问题,欢迎扫码加入学习~ 自动标注难在哪里? 自动驾驶数据闭环中的4D自动标注(即3D空间+时间维度的动态标注)难点主要体现在以下几个方面: 这些难点直接制约了数据闭环的迭代效率,成为提升自动驾驶系统泛化能力与安全性的关键瓶颈。很多小白根本不知道怎么入门,没有完整的学习体系,将会处处踩坑, 久久不能入门,导致最终放弃学习,错失了机会。为此我们联合行业知名4D自动标注算法专家,出品了平台首门 《自动驾驶4D自动标注算法就业小班课》 教程。旨在解 决大家入门难,优化进阶难的问题!什么有 ...
通用障碍物的锅又丢给了4D标注。。。
自动驾驶之心· 2025-08-18 01:32
Core Viewpoint - The article discusses the challenges and methodologies in automating the labeling of occupancy data for autonomous driving, emphasizing the importance of the Occupancy Network (OCC) in enhancing model generalization and safety in various driving conditions [2][10]. Group 1: OCC and Its Importance - The Occupancy Network (OCC) is crucial for modeling irregular obstacles such as fallen trees and other non-standard objects, as well as background elements like road surfaces [5][19]. - Since Tesla's announcement of OCC in 2022, it has become a standard feature in visual autonomous driving solutions, leading to a high demand for training data labeling [2][19]. Group 2: Challenges in Automated Labeling - The automation of labeling in the 4D data loop faces several challenges, including high spatial-temporal consistency requirements, complex multi-modal data fusion, and the difficulty of generalizing in dynamic scenes [11][12]. - The need for high precision in 4D automatic labeling often leads to a conflict between labeling efficiency and cost, as manual verification is still required despite the volume of data [11][12]. Group 3: Training Data Generation and Quality Control - The common process for generating training data truth values involves three main methods: 2D-3D object detection consistency, comparison with edge models, and manual intervention for quality control [9][10]. - High-quality automated labeling data can be used for training both vehicle models and cloud-based large models, facilitating continuous optimization [10][12]. Group 4: Course Offerings and Learning Opportunities - The article promotes a course on 4D automatic labeling, which covers the entire process and core algorithms, aiming to address entry-level challenges and optimize advanced learning [10][12]. - The course includes practical exercises and real-world algorithm applications, focusing on dynamic obstacle detection, SLAM reconstruction, and the overall data loop [12][13][20]. Group 5: Instructor and Target Audience - The course is led by an industry expert with extensive experience in data loop algorithms for autonomous driving, having participated in multiple production delivery projects [24]. - The target audience includes researchers, students, and professionals looking to transition into the field of data loops, requiring a foundational understanding of deep learning and autonomous driving perception algorithms [26][31].
自动驾驶下半场 - 千万级自动标注量产泛化的困局。。。
自动驾驶之心· 2025-08-04 23:33
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近15个 方向 学习 路线 智能驾驶下半场 - 千万级自动标注量产泛化 智能驾驶的下半场是千万级4D自动标注量产泛化的主场。 随着智能驾驶的概念渐入大众视野,简单场景的智驾能力已经不再满足日常需求。更高阶的智驾能力,更强 大的泛化性和安全性越来越刚需。端到端、大模型、VLA都对标注数据的质量和数量有了更大的需求。人工标注的效率已经无法满足量产需求,因此4D自动标注的必 要性日益凸显。 某招聘网站上3-5年的云端模型算法工程师薪资已达百万! 和以往各感知任务单独标注不同,动静态障碍物、OCC的独立标注已经无法满足当下量产数据的要求。端到端数据需要时间同步后的传感器统一标注动静态元素、 OCC和轨迹等等,这样才能保证训练数据的完整性。 面对越来越复杂的标注需求和训练数据需求,自动化4D自动标注的重要性日益凸显。 关于自动标注的进一步详细内容,这里推荐学习平台打造的《自动驾驶4D标注就业小班课》!课程详细介绍了动静态、OCC和端到端自动化标注的全流程以及量产实 际遇到的问题,欢迎扫码加入学习~ 自动标注难在哪里? 自动驾驶数据闭环中的4D自动 ...
看完懂车帝的测评,才发现和特斯拉的差距可能在4D自动标注...
自动驾驶之心· 2025-07-28 10:41
Core Viewpoint - The article emphasizes the critical importance of high-quality 4D automatic annotation in the development of autonomous driving technology, highlighting the challenges and complexities involved in achieving effective data annotation for dynamic and static elements in various driving scenarios [1][6][7]. Group 1: Industry Trends and Challenges - The industry consensus is that while model algorithms are essential for initial autonomous driving capabilities, they are not sufficient for scaling from basic to advanced functionalities [1]. - Current testing shows that many domestic models struggle with auxiliary driving features, with some achieving a pass rate as low as 1 in 6 [1]. - The shift towards large-scale unsupervised pre-training and high-quality datasets for fine-tuning is seen as a necessary direction for the next phase of perception algorithms in mass production [2]. Group 2: 4D Data Annotation Process - The 4D data annotation process involves multiple complex modules, particularly for dynamic obstacles, which require precise tracking and integration of data from various sensors [2][3]. - Key steps in the dynamic target automatic annotation process include offline 3D detection, tracking, post-processing optimization, and sensor occlusion optimization [4][5]. Group 3: Automation Challenges - High spatial-temporal consistency is required for accurate tracking of dynamic targets across frames, which is complicated by occlusions and interactions in complex environments [6]. - The integration of multi-modal data from different sensors presents challenges in coordinate alignment and semantic unification [6]. - The industry faces difficulties in generalizing models to various driving scenarios, including different cities and weather conditions, which impacts the performance of annotation algorithms [7]. Group 4: Educational Initiatives - The article promotes a specialized course aimed at addressing the challenges of entering the field of 4D automatic annotation, covering the entire process and core algorithms [7][8]. - The course includes practical exercises and real-world applications, focusing on dynamic obstacle detection, SLAM reconstruction, and end-to-end truth generation [10][11][15]. Group 5: Course Structure and Target Audience - The course is structured into several chapters, each focusing on different aspects of 4D automatic annotation, including dynamic obstacles, static elements, and occupancy network (OCC) marking [8][10][14]. - It is designed for individuals with a background in deep learning and autonomous driving perception algorithms, aiming to enhance their practical skills and industry competitiveness [22][23].
行车报漏检了,锅丢给了自动标注。。。
自动驾驶之心· 2025-07-22 07:28
Core Viewpoint - The article discusses the challenges and methodologies in automating the labeling of training data for occupancy networks (OCC) in autonomous driving, emphasizing the need for high-quality data to improve model generalization and safety [2][10]. Group 1: OCC and Its Importance - The occupancy network aims to partition space into small grids to predict occupancy, addressing irregular obstacles like fallen trees and other background elements [3][4]. - Since Tesla's announcement of OCC in 2022, it has become a standard in pure vision autonomous driving solutions, leading to a high demand for training data labeling [2][4]. Group 2: Challenges in Automated Labeling - The main challenges in 4D automated labeling include: 1. High temporal and spatial consistency requirements for tracking dynamic objects across frames [9]. 2. Complexity in fusing multi-modal data from various sensors [9]. 3. Difficulty in generalizing to dynamic scenes due to unpredictable behaviors of traffic participants [9]. 4. The contradiction between labeling efficiency and cost, as high precision requires manual verification [9]. 5. High requirements for generalization in production scenarios, necessitating data extraction from diverse environments [9]. Group 3: Training Data Generation Process - The common process for generating OCC training ground truth involves: 1. Ensuring consistency between 2D and 3D object detection [8]. 2. Comparing with edge models [8]. 3. Involving manual labeling for quality control [8]. Group 4: Course Offerings - The article promotes a course on 4D automated labeling, covering the entire process and core algorithms, aimed at learners interested in the autonomous driving data loop [10][26]. - The course includes practical exercises and addresses real-world challenges in the field, enhancing algorithmic capabilities [10][26]. Group 5: Course Structure - The course is structured into several chapters, including: 1. Basics of 4D automated labeling [11]. 2. Dynamic obstacle labeling [13]. 3. Laser and visual SLAM reconstruction [14]. 4. Static element labeling based on reconstruction [16]. 5. General obstacle OCC labeling [18]. 6. End-to-end ground truth labeling [19]. 7. Data loop topics, addressing industry pain points and interview preparation [21].
端到端自动驾驶需要什么样的标注数据?
自动驾驶之心· 2025-07-18 10:32
Core Viewpoint - The article emphasizes the importance of high-quality data sets for autonomous driving, highlighting the need for efficient and low-cost methods to obtain these data sets through advanced 4D labeling techniques [1][2]. Group 1: Importance of 4D Labeling - The demand for automated 4D labeling is increasing due to the growing complexity of labeling tasks in autonomous driving, which includes dynamic and static object labeling, OCC labeling, and end-to-end labeling [1][2]. - Automated labeling algorithms are crucial for generating high-precision ground truth data without being limited by vehicle computing power, allowing for the optimization of results using full temporal data [1][2]. Group 2: Challenges in Automated Labeling - Key challenges in 4D automated labeling include maintaining high spatial-temporal consistency, complex multi-modal data fusion, generalization in dynamic scenes, balancing labeling efficiency with cost, and ensuring performance across various production scenarios [2][3]. Group 3: Course Offerings - The article introduces a course titled "Automated Driving 4D Labeling Employment Class," which aims to address the difficulties in learning and advancing in the field of automated labeling [2][4]. - The course covers the entire process of 4D automated labeling, including dynamic and static object labeling, OCC labeling, and end-to-end labeling, with practical exercises to enhance algorithm capabilities [4][18]. Group 4: Course Structure - The course is structured into several chapters, each focusing on different aspects of 4D automated labeling, such as the basics of 4D labeling, dynamic object labeling, SLAM reconstruction, static element labeling, OCC labeling, and end-to-end truth generation [5][7][8][10][11][12]. - Each chapter includes practical exercises and real-world applications to ensure participants not only understand the concepts but can also apply them effectively [4][18]. Group 5: Target Audience - The course is designed for a diverse audience, including researchers, students, and professionals looking to transition into the field of data closure in autonomous driving [18][19].
从BEV到端到端,谈谈自动驾驶数据闭环的核心~
自动驾驶之心· 2025-07-14 10:36
Core Viewpoint - The article emphasizes the importance of high-quality data sets for autonomous driving, highlighting the need for efficient and low-cost methods to obtain these data sets through advanced 4D labeling techniques [1][2]. Group 1: Importance of 4D Labeling - The demand for automated 4D labeling is increasing due to the growing complexity of autonomous driving scenarios, which require precise tracking of dynamic and static elements [1][3]. - Automated labeling algorithms are crucial for generating high-precision ground truth data, which can optimize results using full temporal data without being limited by vehicle computing power [1][2]. Group 2: Challenges in Automated Labeling - Key challenges in 4D automated labeling include maintaining high spatial-temporal consistency, complex multi-modal data fusion, and ensuring model generalization across various driving conditions [2][3]. - The industry faces significant pain points such as sensor calibration, occlusion handling, and the need for high-quality automated labeling results [2][3]. Group 3: Course Offerings - The article introduces a course titled "Automated Driving 4D Labeling Employment Class," which aims to address the challenges of entering the field and optimizing advanced learning [2][4]. - The course covers the entire process of 4D automated labeling, including dynamic and static object labeling, occupancy labeling, and end-to-end labeling methodologies [2][4]. Group 4: Course Structure - The course is structured into several chapters, each focusing on different aspects of 4D automated labeling, such as dynamic object detection, SLAM reconstruction, and static element labeling [3][4][5]. - Practical exercises are included in each chapter to enhance understanding and application of the concepts taught [4][5]. Group 5: Target Audience - The course is designed for individuals interested in deepening their knowledge in the autonomous driving data loop, including researchers, students, and professionals looking to transition into this field [18][19].
都在抢端到端的人才,却忽略了最基本的能力。。。
自动驾驶之心· 2025-07-12 06:36
Core Viewpoint - The article emphasizes the importance of high-quality 4D data automatic annotation in the development of autonomous driving systems, highlighting that model algorithms are crucial for initial development but not sufficient for advanced capabilities [3][4]. Group 1: Industry Trends - A new player in the autonomous driving sector has rapidly advanced its intelligent driving capabilities, surpassing competitors like Xiaopeng within six months, leading to a talent war for engineers in the industry [2]. - The industry consensus indicates that the future of intelligent driving relies on vast amounts of automatically annotated data, marking a shift towards high-quality 4D data annotation as a critical component for mass production [3][4]. Group 2: Challenges in Data Annotation - The main challenges in 4D automatic annotation include high requirements for spatiotemporal consistency, complex multi-modal data fusion, difficulties in generalizing dynamic scenes, and the contradiction between annotation efficiency and cost [8][9]. - The automation of dynamic object annotation involves several steps, including offline 3D detection, tracking, post-processing optimization, and sensor occlusion optimization [5][6]. Group 3: Educational Initiatives - The article introduces a course aimed at addressing the challenges of entering the field of 4D automatic annotation, covering the entire process and core algorithms, and providing practical exercises [9][24]. - The course is designed for various audiences, including researchers, students, and professionals looking to transition into the data closure field, requiring a foundational understanding of deep learning and autonomous driving perception algorithms [25].
当下自动驾驶的技术发展,重建还有哪些应用?
自动驾驶之心· 2025-06-29 08:19
Core Viewpoint - The article discusses the evolving landscape of 4D annotation in autonomous driving, emphasizing the shift from traditional SLAM techniques to more advanced methods for static element reconstruction and automatic labeling [1][4]. Group 1: Purpose and Applications of Reconstruction - The primary purposes of reconstruction are to create 3D maps from lidar or multiple cameras and to output vector lane lines and categories [5][6]. - The application of 4D annotation in static elements remains broad, with a focus on lane markings and static obstacles, which require 2D spatial annotations at each timestamp [1][6]. Group 2: Challenges in Automatic Annotation - The challenges in 4D automatic annotation include high temporal consistency requirements, complex multi-modal data fusion, difficulties in generalizing dynamic scenes, conflicts between annotation efficiency and cost, and high demands for scene generalization in production [8][9]. - These challenges hinder the iterative efficiency of data loops in autonomous driving, impacting the system's generalization capabilities and safety [8]. Group 3: Course Structure and Content - The course on 4D automatic annotation covers a comprehensive curriculum, including dynamic obstacle detection, SLAM reconstruction principles, static element annotation based on reconstruction graphs, and the end-to-end truth generation process [9][10][17]. - Each chapter includes practical exercises to enhance understanding and application of the algorithms discussed [9][10]. Group 4: Instructor and Target Audience - The course is led by an industry expert with extensive experience in multi-modal 3D perception and data loop algorithms, having participated in multiple production delivery projects [21]. - The target audience includes researchers, students, and professionals looking to transition into the data loop field, requiring a foundational understanding of deep learning and autonomous driving perception algorithms [24][25].
数据闭环的核心 - 静态元素自动标注方案分享(车道线及静态障碍物)
自动驾驶之心· 2025-06-26 13:33
Core Viewpoint - The article emphasizes the importance of 4D automatic annotation in the autonomous driving industry, highlighting the shift from traditional 2D static element annotation to more efficient 3D scene reconstruction methods [2][3][4]. Group 1: Traditional 2D Annotation Deficiencies - Traditional 2D static element annotation is time-consuming and labor-intensive, requiring repeated work for each timestamp [2]. - The need for 3D scene reconstruction allows for static elements to be annotated only once, significantly improving efficiency [2][3]. Group 2: 4D Automatic Annotation Process - The process of 4D automatic annotation involves several steps, including converting 3D scenes to BEV views and training cloud-based models for automatic annotation [6]. - The cloud-based pipeline is distinct from the vehicle-end model, focusing on high-quality automated annotation that can be used for vehicle model training [6]. Group 3: Challenges in Automatic Annotation - Key challenges in 4D automatic annotation include high temporal consistency requirements, complex multi-modal data fusion, and the difficulty of generalizing dynamic scenes [7]. - The industry faces issues with annotation efficiency and cost, as high-precision 4D automatic annotation often requires manual verification, leading to long cycles and high costs [7]. Group 4: Course Offerings and Learning Opportunities - The article promotes a course on 4D automatic annotation, covering dynamic and static elements, OCC, and end-to-end automation processes [8][9]. - The course aims to provide a comprehensive understanding of the algorithms and practical applications in the field of autonomous driving [8][9]. Group 5: Course Structure and Target Audience - The course is structured into multiple chapters, each focusing on different aspects of 4D automatic annotation, including dynamic obstacle marking, SLAM reconstruction, and end-to-end truth generation [9][11][12][16]. - It is designed for a diverse audience, including researchers, students, and professionals looking to transition into the data loop field [22][24].