人机情感交互

Search documents
机器情感与AI陪伴的人文审度⑥|邱德钧、李玮农:超越记忆——情感计算中遗忘的必要性和实现
Xin Lang Cai Jing· 2025-07-17 02:25
Group 1 - The year 2024 is referred to as the "Year of Humanoid Robots," with predictions that emotional communication between humans and robots will become a norm in future intelligent societies [1] - The concept of machine emotions and AI companionship raises questions about the impact on human-machine interaction and relationships, as well as cultural and gender perspectives on these emotional connections [1] - The discussions highlight the potential social impacts, technological risks, and ethical issues arising from human-robot emotional interactions, prompting interdisciplinary research [1] Group 2 - The concept of machine emotions is defined and analyzed through emotional intelligence, human-machine emotions, and human-machine interaction, advocating for a limited approach to the development of machine emotions [2] - A new perspective on endowing machines with emotional capabilities is proposed based on a life-centered consciousness theory, suggesting that simulating biological homeostasis can lead to autonomous adaptability in machines [2] - Ethical reflections on human-machine emotional interactions, particularly in the context of AI resurrection technology, reveal risks such as emotional dependency and identity crises, necessitating regulatory and cultural adjustments [2] Group 3 - The philosophical discussions in affective computing often rely on idealized technical assumptions, overlooking the importance of forgetting mechanisms in creating realistic and ethical AI emotional systems [3][4] - The current challenges in affective computing include the reliance on data quality and the superficiality of emotional expressions in AI systems, which fail to capture the complexity of human emotional experiences [6] - The introduction of forgetting mechanisms is essential for enhancing the adaptability and authenticity of emotional AI, allowing systems to discard outdated emotional data [11][12] Group 4 - The proposed phenomenology-inspired human-like forgetting neural model (PHFNM) aims to integrate individual and collective forgetting processes in emotional AI systems, reflecting both natural decay and active forgetting [19][22] - The model consists of three interconnected layers: a low-dimensional emotional index layer for natural decay, a memory encoding layer for dynamic reconstruction, and an active forgetting layer for ethical regulation [23][24][25] - The PHFNM framework emphasizes the need for a balance between individual emotional memory and collective social interactions, ensuring that emotional AI systems remain relevant and ethically responsible [26][27]