Workflow
模型微调
icon
Search documents
用微信聊天记录来做AI数字的你,开源了
3 6 Ke· 2025-05-16 07:19
Core Insights - The WeClone project has gained significant attention as a solution for creating digital avatars based on WeChat chat records, utilizing large language models and fine-tuning techniques [1][2][3] - The project leverages RAG knowledge base principles to import WeChat chats and fine-tune models, enabling users to generate personalized digital personas [2][3] - The project is open-source and has garnered 8.7k stars on GitHub, indicating strong community interest and engagement [1] Project Overview - WeClone allows users to create digital avatars from their WeChat chat records, which are considered personal and detailed knowledge bases [3][7] - The project employs a default model, Qwen2.5-7B-Instruct, and utilizes LoRA for fine-tuning, requiring approximately 16GB of GPU memory [2] - The project includes features for automatic speech recognition (ASR) and text-to-speech (TTS), enabling the digital avatar to mimic the user's voice [2] Applications and Use Cases - The project can generate digital personas for various roles, including customer service representatives, marketing agents, and financial advisors, by utilizing chat records as knowledge bases [7] - Digital avatars can help reduce costs in customer service by automating responses based on accumulated chat data, thus eliminating the need for separate knowledge base management [7] - The ability to create tailored digital personas for different industries and roles enhances the effectiveness of communication and service delivery [7] Technical Implementation - Users can extract WeChat chat records using PyWxDump, with specific instructions for data migration and export in CSV format [6] - The project supports customization of dialogue names and system prompts, allowing users to personalize their digital avatars further [5] Community Engagement - The project encourages community participation by inviting users to join development groups for sharing product design cases and contributing to the development of digital personas [8]
万字解读OpenAI产品哲学:先发布再迭代、不要低估模型微调和评估
Founder Park· 2025-04-15 11:56
今天凌晨, OpenAI 发布了新模型 GPT-4.1 ,相对比 4o,GPT-4.1 在编程和指令遵循方面的能力显 著提升,同时还宣布 GPT-4.5 将会在几个月后下线。 不少人吐槽 OpenAI 让人迷惑的产品发布逻辑——GPT-4.1 晚于 4.5 发布,以及混乱的模型命名,这 些问题,都能在 OpenAI CPO Kevin Weil 最近的一期播客访谈中得到解答。 在访谈中,Kevin Weil 分享了 OpenAI 在产品方面的路线规划,以及所拥护的产品发布哲学「迭代 部署」,对于近期火热的 4o 图片生成功能,也做了内部的复盘。 Kevin Weil 表示,「我们尽量保持轻量级,因为它不可能完全正确。我们会在半路放弃一些不正确 的做法或研究计划,因为我们会不断学习新的东西。 我们有一个哲学叫做迭代部署,与其等你完全 了解模型的所有能力后再发布,不如先发布,即使不完美,然后公开迭代。 」 背景:Kevin Weil 是 OpenAI 的首席产品官,负责管理 ChatGPT、企业产品和 OpenAI API 的开发。在加入 OpenAI 之前,Kevin 曾担任 Twitter、Instagram ...