突触可塑性

Search documents
南方科技大学发表最新Cell论文
生物世界· 2025-08-23 00:55
Core Viewpoint - The study reveals that the oligomerization of Shank3 regulates the material properties of postsynaptic density (PSD) condensates, which are crucial for synaptic plasticity and neuronal functions related to learning and memory [3][5][7]. Summary by Sections - The research team from Southern University of Science and Technology published findings indicating that PSD condensates exhibit soft-glass-like properties, with Shank3 protein oligomerization playing a key role in governing these material characteristics [3][5]. - The study found that the reconstructed PSD condensates formed a soft-glass material without signs of irreversible amyloid-like structures. This glass-like formation relies on specific, multivalent interactions among scaffold proteins, which mediate the network flow of PSD proteins [4]. - Disruption of Shank3's SAM domain-mediated oligomerization, observed in patients with Phelan-McDermid syndrome, leads to a softening of PSD condensates, impairing synaptic transmission and plasticity, and resulting in autism-like behaviors in mice [4][5]. - Overall, the research emphasizes the importance of the material properties of PSD condensates in neuronal synaptic functions related to learning and memory [7].
哺乳动物回声定位趋同机制揭示
Ke Ji Ri Bao· 2025-06-12 01:00
Core Insights - The research reveals a convergent mechanism of echolocation in different mammalian species, providing new perspectives on the evolutionary origins of this complex behavior [1][2] - The study highlights the significance of non-coding regulatory regions in the convergent evolution of behaviors, challenging the traditional focus on protein-coding genes [2] Group 1: Research Findings - The study identifies 222 shared open chromatin regions in the hippocampal area of echolocating species, significantly higher than random expectations, indicating a complex gene regulatory network [1] - Traditional auditory-related genes are found to be abnormally active in the hippocampal regulatory networks of echolocating mammals, suggesting their role in spatial localization functions [2] Group 2: Methodology and Implications - The research employs innovative techniques such as chromatin accessibility sequencing, transcriptome sequencing, and transmission electron microscopy to compare the hippocampal gene regulatory features of various species [1] - The establishment of the Daluoshan pig-tailed mouse as a new model organism offers a valuable platform for further exploration of the neural mechanisms underlying echolocation [2]
晶体管,新突破
半导体芯闻· 2025-04-03 10:12
Core Viewpoint - Researchers from the National University of Singapore (NUS) have demonstrated that a single standard silicon transistor can mimic the behavior of biological neurons and synapses, bringing hardware-based artificial neural networks (ANN) closer to reality [1][3]. Group 1: Research Findings - The NUS research team, led by Professor Mario Lanza, provides a scalable and energy-efficient solution for hardware-based ANN, making neuromorphic computing more feasible [1][3]. - The study published in Nature on March 26, 2025, shows that a single silicon transistor can replicate neural firing and synaptic weight changes, which are fundamental mechanisms of biological neurons and synapses [3][4]. Group 2: Technical Innovations - The research achieved this by adjusting the resistance of the transistor to specific values, controlling two physical phenomena: impact ionization and charge trapping [4]. - The team developed a dual-transistor unit called "neuro-synaptic random access memory" (NS-RAM), which operates in neuron or synapse states [4]. Group 3: Advantages of the New Approach - The method utilizes commercial CMOS technology, ensuring scalability, reliability, and compatibility with existing semiconductor manufacturing processes [4]. - Experimental results show that NS-RAM units exhibit low power consumption, stable performance over multiple operational cycles, and consistent behavior across different devices, essential for building reliable ANN hardware [4].