触觉感知(Tactile Sensing)

Search documents
正式开课!具身大脑和小脑算法与实战教程来啦
具身智能之心· 2025-09-15 00:04
Core Insights - The exploration towards Artificial General Intelligence (AGI) highlights embodied intelligence as a key direction, focusing on the interaction and adaptation of intelligent agents within physical environments [1][3] - The development of embodied intelligence technology has evolved through various stages, from low-level perception to high-level task understanding and generalization [6][14] Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, establishing valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, transitioning from laboratories to commercial and industrial applications [3] - Major domestic companies like Huawei, JD, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build a comprehensive ecosystem for embodied intelligence, while international players like Tesla and investment firms support advancements in autonomous driving and warehouse robotics [5] Technological Evolution - The evolution of embodied intelligence technology has progressed through several phases: - The first phase focused on grasp pose detection, which lacked the ability to model task context and action sequences [6] - The second phase introduced behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6] - The third phase, emerging in 2023, utilized Diffusion Policy methods to enhance stability and generalization by modeling action trajectories [6][7] - The fourth phase, starting in 2025, explores the integration of VLA models with reinforcement learning and tactile sensing to overcome current limitations [9][11][12] Educational Initiatives - The demand for engineering and system capabilities in embodied intelligence is increasing as the industry shifts from research to deployment, necessitating higher engineering skills [17] - A comprehensive curriculum has been developed to cover various aspects of embodied intelligence, including practical applications and advanced topics, aimed at both beginners and advanced learners [14][20]
3个月!搞透VLA/VLA+触觉/VLA+RL/具身世界模型等方向!
具身智能之心· 2025-08-22 00:04
Core Viewpoint - The exploration of Artificial General Intelligence (AGI) is increasingly focusing on embodied intelligence, which emphasizes the interaction and adaptation of intelligent agents within physical environments, enabling them to perceive, understand tasks, execute actions, and learn from feedback [1]. Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, establishing valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, which are advancing the technology of embodied intelligence [3]. - Major domestic companies like Huawei, JD, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build a robust ecosystem for embodied intelligence, while international firms like Tesla and investment institutions are supporting companies like Wayve and Apptronik in the development of autonomous driving and warehouse robots [5]. Technological Evolution - The development of embodied intelligence has progressed through several stages: - The first stage focused on grasp pose detection, which struggled with complex tasks due to a lack of context modeling [6]. - The second stage involved behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6]. - The third stage introduced Diffusion Policy methods, enhancing stability and generalization by modeling action sequences, followed by the Vision-Language-Action (VLA) model phase, which integrates visual perception, language understanding, and action generation [7][8]. - The fourth stage, starting in 2025, aims to integrate VLA models with reinforcement learning, world models, and tactile sensing to overcome current limitations [8]. Product and Market Development - The evolution of embodied intelligence technologies has led to the emergence of various products, including humanoid robots, robotic arms, and quadrupedal robots, serving industries such as manufacturing, home services, dining, and medical rehabilitation [9]. - The demand for engineering and system capabilities is increasing as the industry shifts from research to deployment, necessitating higher engineering skills for training and simulating strategies on platforms like Mujoco, IsaacGym, and Pybullet [23]. Educational Initiatives - A comprehensive curriculum has been developed to cover the entire technology route of embodied "brain + cerebellum," including practical applications and real-world projects, aimed at both beginners and advanced learners [10][20].
VLA/VLA+触觉/VLA+RL/具身世界模型等方向教程来啦!
具身智能之心· 2025-08-18 00:07
Core Viewpoint - The exploration of Artificial General Intelligence (AGI) is increasingly focusing on embodied intelligence, which emphasizes the interaction and adaptation of intelligent agents within physical environments, enabling them to perceive, understand tasks, execute actions, and learn from feedback [1]. Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, leading to the establishment of valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, which are advancing the technology of embodied intelligence [3]. - Major domestic companies like Huawei, JD.com, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build a robust ecosystem for embodied intelligence, while international players like Tesla and investment firms are supporting companies like Wayve and Apptronik in the development of autonomous driving and warehouse robots [5]. Technological Evolution - The development of embodied intelligence has progressed through several stages: - The first stage focused on grasp pose detection, which struggled with complex tasks due to a lack of context modeling [6]. - The second stage involved behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6]. - The third stage introduced Diffusion Policy methods, enhancing stability and generalization by modeling action sequences, followed by the emergence of Vision-Language-Action (VLA) models that integrate visual perception, language understanding, and action generation [7]. - The fourth stage, starting in 2025, aims to integrate VLA models with reinforcement learning, world models, and tactile sensing to overcome current limitations [8]. Product and Market Development - The evolution of embodied intelligence technologies has led to the emergence of various products, including humanoid robots, robotic arms, and quadrupedal robots, serving industries such as manufacturing, home services, dining, and medical rehabilitation [9]. - The demand for engineering and system capabilities is increasing as the industry shifts from research to deployment, necessitating training in platforms like Mujoco, IsaacGym, and Pybullet for strategy training and simulation testing [23]. Educational Initiatives - A comprehensive curriculum has been developed to cover the entire technology route of embodied "brain + cerebellum," including practical applications and advanced topics, aimed at both beginners and those seeking to deepen their knowledge [10][20].
VLA/VLA+触觉/VLA+RL/具身世界模型等!国内首个具身大脑+小脑算法实战教程
具身智能之心· 2025-08-14 06:00
Core Viewpoint - The exploration of Artificial General Intelligence (AGI) is increasingly focusing on embodied intelligence, which emphasizes the interaction and adaptation of intelligent agents within physical environments, enabling them to perceive, understand tasks, execute actions, and learn from feedback [1]. Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, establishing valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, which are advancing the technology of embodied intelligence [3]. - Major domestic companies like Huawei, JD.com, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build a robust ecosystem for embodied intelligence, while international players like Tesla and investment firms are supporting companies like Wayve and Apptronik in the development of autonomous driving and warehouse robots [5]. Technological Evolution - The development of embodied intelligence has progressed through several stages: - The first stage focused on grasp pose detection, which struggled with complex tasks due to a lack of context modeling [6]. - The second stage involved behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6]. - The third stage introduced Diffusion Policy methods, enhancing stability and generalization by modeling action sequences, followed by the emergence of Vision-Language-Action (VLA) models that integrate visual perception, language understanding, and action generation [7][8]. - The fourth stage, starting in 2025, aims to integrate VLA models with reinforcement learning, world models, and tactile sensing to overcome current limitations [8]. Product and Market Development - The evolution of embodied intelligence technologies has led to the emergence of various products, including humanoid robots, robotic arms, and quadrupedal robots, serving industries such as manufacturing, home services, dining, and medical rehabilitation [9]. - The demand for engineering and system capabilities is increasing as the industry shifts from research to deployment, necessitating skills in platforms like Mujoco, IsaacGym, and Pybullet for strategy training and simulation testing [24].
国内首个具身大脑+小脑算法实战全栈教程
具身智能之心· 2025-08-07 02:38
Core Insights - The exploration towards Artificial General Intelligence (AGI) highlights embodied intelligence as a key direction, focusing on the interaction and adaptation of intelligent agents within physical environments [1] - The development of embodied intelligence is marked by the evolution of technology from low-level perception to high-level task understanding and generalization [6][9] Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, establishing valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, transitioning from laboratories to commercial and industrial applications [3] - Major domestic companies like Huawei, JD, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build an ecosystem for embodied intelligence, while international players like Tesla and investment firms support advancements in autonomous driving and warehouse robotics [5] Technological Evolution - The evolution of embodied intelligence technology has progressed through several stages: - The first stage focused on grasp pose detection, which struggled with complex tasks due to a lack of context modeling [6] - The second stage involved behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6] - The third stage introduced Diffusion Policy methods, enhancing stability and generalization through sequence modeling [7] - The fourth stage, emerging in 2025, explores the integration of VLA models with reinforcement learning and tactile sensing to overcome current limitations [8] Product Development and Market Growth - The advancements in embodied intelligence have led to the development of various products, including humanoid robots, robotic arms, and quadrupedal robots, serving industries such as manufacturing, home services, and healthcare [9] - The demand for engineering and system capabilities is increasing as the industry shifts from research to deployment, necessitating higher engineering skills [13] Educational Initiatives - A comprehensive curriculum has been developed to assist learners in mastering the full spectrum of embodied intelligence algorithms, covering topics from basic tasks to advanced models like VLA and its integrations [9][13]