阿玛拉定律
Search documents
独家专访DWS全球研究主管Johannes Mueller:AI革命与投资大变局
2 1 Shi Ji Jing Ji Bao Dao· 2025-11-21 02:17
"计算机时代随处可见,唯独在生产率的统计数据中不见踪影。"1987年,诺贝尔经济学奖得主罗伯特· 索洛(Robert Solow)如是感慨。 历史不会简单重复,但总是押着相同的韵脚,这一次的主角是人工智能。索洛的文章发表近40年后,如 今人们对AI泡沫的担忧挥之不去。 德国万亿欧元资产管理机构DWS全球研究主管Johannes Mueller近日在2025外滩年会上接受21世纪经济 报道记者独家专访时表示,技术革命在长期内往往被低估,而在短期内则被高估。人们目前可能稍微高 估了人工智能带来的益处。从长远来看,考虑到劳动力市场和人口结构的变化,人工智能将有利于全球 经济。 历史已经无数次证明,即使是最具变革性的技术,也必须等到配套的基础设施、技能和产品发展起来 后,才能最大限度地发挥效用,而这可能是一个漫长的过程。 《21世纪》:AI是推动多国股市狂欢的重要力量,你更倾向于将当前的AI热潮视为类似于上世纪90年 代末的互联网泡沫,还是一次真正更具颠覆性的革命开端? Mueller:我认为AI是一场技术革命。然而,有一条定律,我称之为"阿玛拉定律":技术革命在长期内 往往被低估,而在短期内则被高估。我认为我们目前 ...
独家专访DWS全球研究主管:AI革命与投资大变局
2 1 Shi Ji Jing Ji Bao Dao· 2025-11-19 23:40
南方财经 21世纪经济报道记者吴斌 上海报道 "计算机时代随处可见,唯独在生产率的统计数据中不见踪影。"1987年,诺贝尔经济学奖得主罗伯特· 索洛(Robert Solow)如是感慨。 历史不会简单重复,但总是押着相同的韵脚,这一次的主角是人工智能。索洛的文章发表近40年后,如 今人们对AI泡沫的担忧挥之不去。 德国万亿欧元资产管理机构DWS全球研究主管Johannes Mueller近日在2025外滩年会上接受21世纪经济 报道记者独家专访时表示,技术革命在长期内往往被低估,而在短期内则被高估。人们目前可能稍微高 估了人工智能带来的益处。从长远来看,考虑到劳动力市场和人口结构的变化,人工智能将有利于全球 经济。 历史已经无数次证明,即使是最具变革性的技术,也必须等到配套的基础设施、技能和产品发展起来 后,才能最大限度地发挥效用,而这可能是一个漫长的过程。 对于投资者而言,警钟已然敲响。过早播下的种子等不到收获,仓促建起的高塔难抵风雨。每一次技术 狂欢的背后,都是对耐心的考验。对泡沫保持敬畏,方能在狂热中全身而退。 人工智能短期高估、长期低估 《 21 世纪》: AI 是推动多国股市狂欢的重要力量,你更倾向 ...
周伯文“六问”AGI for Science 探索科学智能边界
Xin Hua Cai Jing· 2025-09-25 08:02
Core Viewpoint - The article discusses the potential and challenges of Artificial General Intelligence (AGI) in the context of scientific research, emphasizing the need for a balanced perspective on its capabilities and limitations [1][2]. Group 1: AI for Science Developments - AI for Science (AI4S) is recognized for its value in scientific research, with recent achievements presented at the 2025 Pujiang Innovation Forum, including the Amix-Agent for protein design and the DeepPeptide model for peptide synthesis [2][5]. - The integration of AI in various scientific fields such as biomanufacturing, quantum technology, and climate energy is being promoted through the establishment of the "Scientific Intelligence Strategic Technology Alliance" [5]. Group 2: Six Questions on AGI for Science - The first question addresses the boundaries of AI, questioning whether all scientific problems can be solved by AI, highlighting the historical context of this debate [2]. - The second question examines the predictive capabilities of AGI, cautioning against overestimating current models' ability to predict scientific phenomena due to limitations in existing human knowledge [3]. - The third question focuses on the representation of scientific concepts, suggesting that AI should move beyond natural language to include symbolic languages for better expression [3]. - The fourth question explores the potential for AGI to foster interdisciplinary collaboration, emphasizing its role in revealing unseen connections between different scientific fields [3]. - The fifth question proposes a thought experiment to evaluate AGI's ability to make significant scientific discoveries, using the example of deriving general relativity from prior knowledge [4]. - The sixth question discusses the evolving relationship between researchers, research subjects, and tools, indicating AI's potential to identify valuable patterns in unstructured data [4].