Diffusion Policy

Search documents
从方法范式和应用场景上看强化与VLA/Flow Matching/机器人控制算法
具身智能之心· 2025-08-19 01:54
Core Viewpoint - The article discusses recent advancements in reinforcement learning (RL) and its applications in robotics, particularly focusing on the VLA (Vision-Language Action) models and diffusion policies, highlighting their potential to handle complex tasks that traditional RL struggles with [2][4][35]. Method Paradigms - Traditional RL and imitation learning combined with Sim2Real techniques are foundational approaches in robotics [3]. - VLA models differ fundamentally from traditional RL by using training data distributions to describe task processes and goals, allowing for the execution of more complex tasks [4][35]. - Diffusion Policy is a novel approach that utilizes diffusion models to generate continuous action sequences, demonstrating superior capabilities in complex task execution compared to traditional RL methods [4][5]. Application Scenarios - The article categorizes applications into two main types: basic motion control for humanoid and quadruped robots, and complex/long-range operational tasks [22][23]. - Basic motion control primarily relies on RL and Sim2Real, with current implementations still facing challenges in achieving fluid motion akin to human or animal movements [22]. - For complex tasks, architectures typically involve a pre-trained Vision Transformer (ViT) encoder and a large language model (LLM), utilizing diffusion or flow matching for action output [23][25]. Challenges and Future Directions - The article identifies key challenges in the field, including the need for better simulation environments, effective domain randomization, and the integration of external goal conditions [35]. - It emphasizes the importance of human intention in task definition and the limitations of current models in learning complex tasks without extensive human demonstration data [35][40]. - Future advancements may involve multi-modal input predictions for task goals and the potential integration of brain-machine interfaces to enhance human-robot interaction [35].
具身智能之心技术交流群成立了!
具身智能之心· 2025-08-11 06:01
注意哦, 备注:机构/学校+姓名+研究方向 ,能够快速入群! 感兴趣的同学可以添加小助理微信AIDriver005,邀请加入我们的社群。 具身智能之心技术交流群成立了!主要关注VLA、VLN、遥操作、Diffusion Policy、强化学习、VLA+RL、 sim2real、多模态大模型、仿真、运动控制、目标导航、建图定位、导航等方向。 ...
具身智能之心技术交流群成立了!
具身智能之心· 2025-08-07 02:38
注意哦, 备注:机构/学校+姓名+研究方向 ,能够快速入群! 具身智能之心技术交流群成立了!主要关注VLA、VLN、遥操作、Diffusion Policy、强化学习、VLA+RL、 sim2real、多模态大模型、仿真、运动控制、目标导航、建图定位、导航等方向。 感兴趣的同学可以添加小助理微信AIDriver005,邀请加入我们的社群。 ...
从近30篇具身综述中!看领域发展兴衰(VLA/VLN/强化学习/Diffusion Policy等方向)
自动驾驶之心· 2025-07-11 06:46
Core Insights - The article provides a comprehensive overview of various surveys and research papers related to embodied intelligence, focusing on areas such as vision-language-action models, reinforcement learning, and robotics applications [1][2][3][4][5][6][7][8][9] Group 1: Vision-Language-Action Models - A survey on Vision-Language-Action (VLA) models highlights their significance in autonomous driving and human motor learning, discussing progress, challenges, and future trends [2][3][8] - The exploration of VLA models emphasizes their applications in embodied AI, showcasing various datasets and methodologies [8][9] Group 2: Robotics and Reinforcement Learning - Research on foundation models in robotics addresses applications, challenges, and future directions, indicating a growing interest in integrating AI with robotic systems [3][4] - Deep reinforcement learning is identified as a key area with real-world successes, suggesting its potential for enhancing robotic capabilities [3] Group 3: Multimodal and Generative Approaches - The article discusses multimodal fusion and vision-language models, which are crucial for improving robot vision and interaction with the environment [6] - Generative artificial intelligence in robotic manipulation is highlighted as an emerging field, indicating a shift towards more sophisticated AI-driven robotic systems [6] Group 4: Datasets and Community Engagement - The article encourages engagement with a community focused on embodied intelligence, offering access to a wealth of resources, including datasets and collaborative projects [9]
从近30篇具身综述中!看领域发展兴衰(VLA/VLN/强化学习/Diffusion Policy等方向)
具身智能之心· 2025-07-11 00:57
Core Insights - The article provides a comprehensive overview of various surveys and research papers related to embodied intelligence, focusing on areas such as vision-language-action models, reinforcement learning, and robotics applications [1][2][3][4][5][6][8][9] Group 1: Vision-Language-Action Models - A survey on Vision-Language-Action (VLA) models highlights their significance in autonomous driving and human motor learning, discussing progress, challenges, and future trends [2][3][8] - The exploration of VLA models emphasizes their applications in embodied AI, showcasing a variety of datasets and methodologies [5][8][9] Group 2: Robotics and Reinforcement Learning - Research on foundation models in robotics addresses applications, challenges, and future directions, indicating a growing interest in integrating AI with robotic systems [3][4] - Deep reinforcement learning is identified as a key area with real-world successes, suggesting its potential for enhancing robotic capabilities [3][4] Group 3: Multimodal and Generative Approaches - The article discusses multimodal fusion and vision-language models, which are crucial for improving robot vision and interaction with the environment [6][8] - Generative artificial intelligence in robotic manipulation is highlighted as an emerging field, indicating a shift towards more sophisticated AI-driven solutions [6][8] Group 4: Datasets and Community Engagement - The article encourages engagement with a community focused on embodied intelligence, offering access to a wealth of resources, including datasets and collaborative projects [9]