Workflow
科研
icon
Search documents
南京,全球第五!
Sou Hu Cai Jing· 2025-11-17 00:47
11月16日,施普林格·自然在线发布的《自然》增刊"2025自然指数—科研城市"显示,中国首次占据全球科研城市十强榜单一半以上席位,由2023年的五 席增至2024年的六席。 名单显示 北京继续保持2016年以来 全球科研城市榜首的位置 上海仍居第二位 南京、广州、武汉、杭州 分居第五、第六、第八和第十位 此次发布的增刊聚焦全球主要城市及都市圈2024年在自然指数追踪的高质量期刊上的最新科研产出变化。 除北京和上海外,2024年全球其他十大科研城市依次为纽约都市圈、波士顿都市圈、南京、广州、旧金山湾区、武汉、巴尔的摩—华盛顿,以及杭州。 南京城市创新实力卓越 南京科技创业综合得分 继续稳居全国第三 在"2024年全球创新指数"中 位居 世界科技集群第九 在中国科学技术信息研究所 国家创新型城市创新能力评价报告中 位居 国家创新型城市第5位 在第九届未来网络发展大会上,中国工程院院士、紫金山实验室首席科学家刘韵洁发布全域一体化数算网调度平台、行业首个面向广域网的网络大模型与 多智能体系统,中国科学院院士、紫金山实验室主任尤肖虎发布基带电路AI自动设计工具链。六年时间,紫金山实验室发布的重大原始创新成果近30 项 ...
规模最大动物大脑模拟系统构建 包含近1000万个神经元、260亿个突触
Ke Ji Ri Bao· 2025-11-16 23:42
此次项目由美国艾伦脑科学研究所与日本电气通信大学领衔,并联合三家日本机构共同完成。研究团队 利用艾伦脑科学研究所提供的"艾伦细胞类型数据库"和"艾伦连接图谱"中的真实神经生物学数据,为虚 拟大脑提供了精确的生物物理基础和结构蓝图。再通过艾伦研究所自主研发的大脑建模工具包,将这些 数据转化为一个动态运行的数字皮层模型。 在模拟过程中,专用神经元模拟器"Neulite"将数学方程转化为具有真实生物行为的神经元。这些虚拟神 经元能够像活体细胞一样产生电脉冲、传递信号并形成动态网络。整个模拟过程高度逼真,不仅再现了 神经元的树突分支结构,还完整呈现了突触间的信号传递过程,以及细胞膜电位的波动变化,仿佛在实 时观察真实的脑组织活动。 据美国科学促进会优睿科网站最新消息,美国科学家借助全球顶尖超级计算机的强大算力,构建了迄今 为止规模最大、细节最丰富的动物大脑模拟系统。这一虚拟模型完整复现了小鼠大脑皮层的结构与功 能,包含近1000万个神经元、260亿个突触,以及86个相互连接的脑区,成为研究大脑运作机制的全新 平台。这也意味着科学家正站在一个全新的起点上——从理解大脑,正逐渐演变为构建大脑。 科学家现在可以利用这一模型 ...
记者探访高交会 见证高校科研成果加速创新
Yang Shi Wang· 2025-11-15 23:08
中山大学生物医学工程学院硕士研究生 雷宇键:传统的(设备)心电图它采集时间短,我们设备采集时间可以(从)原来的24个小时(到现在)持续一周 时间。同时我们也开发了一系列的模型,给心电信号做降噪,让我们采集到的信号更好。 深圳清华大学研究院智能无源热控技术研发中心主任 董恺琛:它是个智能控温材料,可以在高温下把多余的热量散到外面,当温度变低时自动切换成保暖 模式,帮助它下面覆盖物体保持住温度。目前材料的成本大概是每平方米,我们可以控制在100元或者是更低。 在中山大学展台,记者看到了这套"心脏性猝死综合防治人工智能可穿戴预警设备",它不仅解决了传统设备穿戴不舒适、信号噪声大且弱等短板,还可以通 过深度学习算法,精准识别异常心电特征,预测猝死风险,为心血管疾病早期干预提供依据。 央视网消息:在本届高交会期间,超百所高校、科研院所也携前沿科研成果集中亮相。 总台央视记者 高晨源:大家看我手中这款彩色材料,它叫零功耗智能控温薄膜,是一种可以实现"冬暖夏凉"的智慧纳米材料。别看它只有薄薄的一层,却 大有用途,在建筑降碳、设施节能、服装热舒适和卫星航天等诸多领域都有巨大潜力。 ...
南京大学最新Nature子刊:韦斯团队开发基于AI的分子结构生成器,应对多氟化合物危机
生物世界· 2025-11-15 01:06
Core Viewpoint - Exposomics is a discipline that studies all environmental exposure factors throughout an individual's life and their association with health, aiming to understand how external exposures influence disease occurrence, complementing genomics and metabolomics [2] Group 1: Research Development - The core challenge in exposomics is converting mass spectrometry data into chemical structures, complicating the tracking of millions of chemical substances in humans and the environment [3][6] - A research team from Nanjing University developed a Molecular Structure Generator (MSGo) that can directly generate chemical structures from mass spectrometry data, discovering unknown perfluorinated compounds in the exposome [6][7] Group 2: Methodology and Performance - MSGo utilizes a Transformer neural network trained on virtual spectral data, achieving a 48% correct identification rate of structures in the validation set and outperforming expert levels in detecting novel perfluorinated compounds in wastewater samples [6][7] - The application of probability-guided masking techniques on virtual spectral data is key to enhancing the performance of MSGo [6]
“何享健青年科学家”第二期项目正式启动 公益助力科研进步 服务科技强国建设
Ren Min Ri Bao· 2025-11-13 22:00
何享健科学基金是美的集团创始人何享健先生于2023年5月个人出资30亿元人民币设立的公益性基金, 致力于支持科学研究和技术创新,为推动人类社会可持续发展贡献力量。 优化评审章程 护航科学基金事业长期发展 何享健先生长期投身公益事业,此前已在基础教育、乡村全面振兴、养老健康等领域资助超100万人 次。此次设立30亿元科学基金,瞄准"国家急需、世界前沿"的基础研究领域,是其公益实践从"民生保 障"向"科技根源性突破"的升级延伸。 作为基金的重点项目之一,"何享健青年科学家"项目由佛山市顺德区美泽科学发展中心承办,旨在鼓励 和支持处于职业生涯早期,在科学探索、技术突破、工程实践领域从事创新应用研究及交叉应用研究的 青年科学家,其取得的重大研究突破与成果应用于医学与生命科学、能源环境与气候变化等科学领域, 以解决人类社会未来面临的挑战。 托举科研梦想 赋能基础研究与应用突破 "何享健青年科学家"首期项目自2024年启动以来,吸引了来自全国的优秀青年科学家参与。2025年10月 25日,"何享健青年科学家"首期项目揭晓仪式及学术研讨会在广东省佛山市顺德区成功举办。20名深耕 医学与生命科学、能源环境与气候变化领域的青年 ...
华人学者本周发表了14篇Nature论文
生物世界· 2025-11-13 04:21
Core Insights - The article highlights the publication of 30 research papers in the prestigious journal Nature, with a significant contribution from Chinese scholars, indicating a strong presence in cutting-edge research [2][4][6]. Group 1: Research Contributions - On November 10, a paper titled "Flexible perovskite/silicon tandem solar cells with 33.6% efficiency" was published, showcasing advancements in solar cell technology [2]. - Another paper on the same day discussed "Flexible perovskite/silicon tandem solar cell with a dual buffer layer," further enhancing the understanding of solar cell efficiency [4]. - On November 11, a study titled "High performance tandem perovskite LEDs through interlayer photon recycling" was released, focusing on improving LED performance [6]. - A paper on comprehensive echocardiogram evaluation using AI was also published on November 11, indicating advancements in medical imaging technology [8]. - On November 12, a study titled "Cytosolic Acetyl-Coenzyme A is a signalling metabolite to control mitophagy" was published, contributing to the understanding of cellular metabolism [15]. Group 2: Notable Collaborations - The collaboration between teams from Westlake University and Kiryl D. Piatkevich resulted in a paper on "iPEX enables micrometre-resolution deep spatial proteomics via tissue expansion," highlighting interdisciplinary research efforts [13]. - A joint effort from Fudan University and other institutions led to a paper on "Silicon solar cells with hybrid back contacts," showcasing collaborative advancements in solar technology [22]. - The publication of "Photoinduced twist and untwist of moiré superlattices" by Stanford University researchers indicates ongoing research in material science [24].
“手到擒来”的微观“快递员”
Core Insights - The article discusses the development of a 3D micro-nano robot by the Institute of Physics and Chemistry, Chinese Academy of Sciences, which can perform precise tasks in the microscopic world, paving the way for future advancements in precision medicine [1][7]. Group 1: Micro-Nano Robot Overview - Micro-nano robots are intelligent miniature machines that operate at the micro to nano scale, capable of movement, rotation, and manipulation of tiny particles or cells, thus enabling human interaction in the microscopic realm [2]. - The new design overcomes limitations of existing micro-nano robots, which often use single material systems and struggle with multi-step operations in complex environments [2][5]. Group 2: Design and Functionality - The micro-nano robot features a hand-like design that allows for flexible observation and manipulation of target particles, enhancing its operational capabilities [2]. - It is constructed using femtosecond laser direct writing technology, which allows for high-precision fabrication of various micro-nano structures with different functionalities [5]. Group 3: Operational Mechanism - The robot operates by responding to changes in pH levels in its environment, with its "hands" opening and closing like a flower in response to acidic or alkaline conditions [6]. - It can transport and release particles or cells with a maximum speed of 65.56 micrometers per second, demonstrating agility in navigating obstacles [6]. Group 4: Potential Applications - The micro-nano robot has significant potential in precision medicine, such as drug delivery and cellular manipulation, and could serve as an invisible assistant to doctors [7]. - Beyond medical applications, it can also be utilized in environmental remediation and micro-manufacturing, such as removing specific pollutants from water environments [7].
操控原子 “按需造物”的时代来了?
Ke Ji Ri Bao· 2025-11-12 23:54
在中国科学院苏州纳米技术与纳米仿生研究所的实验楼内,一条规模化的银色超高真空管道贯穿其间, 将50余台大型科研设备连成整体。精密仪器星罗棋布,各种管线交错互联。这就是全球规模最大、性能 最优、共享程度最高的真空互联综合实验装置——纳米真空互联实验站(NANO-X)。科研人员身着白 大褂,专注操作设备系统。在这充满未来感的实验现场,他们正潜心探索着一项前沿技术——原子级制 造。 如何让这一重大科学装置发挥最大效用?近日,物理、化学、材料、人工智能、精密仪器等领域专家汇 聚苏州,召开题为"'信息器件原子级制造实验装置'关键科学技术"的香山科学会议,探讨原子级制造关 键科学问题与技术挑战。 "推动原子级制造领域的原始创新,具有重要战略意义。当前的一个探索方向是,如何在原子尺度实现 信息器件的精准制造,并建设出一个既蕴含普遍科学意义,又提升国家竞争力的重大科学装置。"本次 会议上,会议执行主席、中国科学院院士薛其坤表示,原子级制造涉及学科交叉,不仅体现共性科学问 题的探索,也反映了实验技术的水平,需要科研人员的集体智慧。同时,必须紧密对接和凝练未来信息 技术的实际需求,将前沿基础研究能力转化为产业优势,形成具有中国特 ...
“手到擒来”的微观“快递员”(科技瞭望)
Core Viewpoint - The article discusses the development of a 3D micro-nano robot by the Institute of Physics, Chinese Academy of Sciences, which can perform precise tasks in the microscopic world, paving the way for advancements in precision medicine [1][2]. Group 1: Micro-Nano Robot Overview - Micro-nano robots are intelligent miniature machines that can perform tasks such as movement, rotation, and the manipulation of small particles or cells, offering significant potential in fields like precision medicine, environmental remediation, and micro-manufacturing [2]. - The new design overcomes limitations of existing micro-nano robots, which often use single material systems and struggle with multi-stimulus control in complex environments [2][5]. Group 2: Design and Functionality - The robot is designed in the shape of a hand, allowing for flexible observation and manipulation of target particles, with a structure that opens and closes to enhance functionality [2][5]. - It utilizes femtosecond laser direct writing technology to create various micro-nano structures from different materials, enabling each part to have distinct functions [5]. Group 3: Operational Mechanism - The robot operates by responding to changes in pH levels in its environment, allowing its "hand" to open or close automatically, similar to a human hand reacting to heat [6]. - It can navigate around obstacles and accurately locate target particles or cells, successfully performing tasks such as grabbing and releasing under specific environmental conditions [6]. Group 4: Performance and Reliability - Experimental results show that the robot can successfully manipulate polystyrene microspheres and human kidney cancer cells, achieving a maximum speed of 65.56 micrometers per second while maintaining reliable performance after multiple cycles of pH changes [6][7]. - The robot's design addresses the limitations of traditional micro-nano robots, enabling more complex operations in the microscopic realm [7]. Group 5: Future Applications - The micro-nano robot has potential applications in medicine, such as targeted drug delivery and minimally invasive surgeries, as well as in environmental cleanup and micro-manufacturing [7]. - It could serve as a micro-operation platform for cell sorting, injection, and mechanical studies, contributing to advancements in both medical and scientific research [7].
一图了解非营利性科研机构自用房产土地免征房产税、城镇土地使用税政策
蓝色柳林财税室· 2025-11-12 13:22
欢迎扫描下方二维码关注: 》》非营利性科研机构是什么? > 非营利性科研机构要以 推动科技进步为宗旨,不以营 利为目的,主要从事应用基础 研究或向社会提供公共服务。 > 非营利性科研机构的认 定标准,由科技部会同财政 部、中编办、国家税务总局另 行制定。 > 非营利性科研机构需要 书面向科技行政主管部门申明 其性质,按规定进行设置审批 和登记注册,并由接受其登记 注册的科技行政部门核定,在 执业登记中注明"非营利性科 研机构"。 → 非营利性科研机构的认定标准,由科技部会同 财政部、中编办、国家税务总局另行制定。非营利性 科研机构需要书面向科技行政主管部门申明其性 质,按规定进行设置审批和登记注册,并由接受其 登记注册的科技行政部门核定,在执业登记中注明 "非营利性科研机构"。 政策依据 /《财政部 国家税务总局关于非营利性科研 机构税收政策的通知》财税〔2001〕5号 >优惠政策 > 非营利性科研机构自用的房产、土地,免征房 产税、城镇土地使用税。 》享受主体 → 非营利性科研机构 》申请条件 》申报时点 日 12 * = = > 根据房产税、城镇土地使用税纳税义务发生时 间,在规定的纳税期限内申报。 来源 ...