大奖章基金
Search documents
Hinton的亿万富豪博士生
量子位· 2026-01-10 03:07
一水 发自 凹非寺 量子位 | 公众号 QbitAI 最开始是一张老照片—— 1986年CMU首届联结主义夏令营合影 。 有人将这张合影誉为 AI界的"索尔维会议" ,认为只要是玩神经网络、计算神经、计算语言的后辈们,几乎都能在这张照片里找到自家祖师 爷。 一张照片,一段往事,一个愈加伟大的人格…… 这就是Hinton最近又在圈内被热议的"江湖往事"。 不信你看,图中圈出来的就是深度学习发明人、诺贝尔物理学奖、图灵奖双料得主 Hinton ,正是在他的坚持下,神经网络才最终迎来春天。 另一位熟面孔是图灵奖得主 Yann LeCun ,他后来发明的卷积神经网络开启了计算机视觉时代。 (ps:LeCun每次外出演讲都会在PPT里 放这张图,真爱粉无疑了) 以及同框的还有Stan Dehaene、Mitsuo Kawato、Jay McClelland等一众在认知科学、神经科学和计算机领域登峰造极的大神…… 虽然在80年代这群年轻人还籍籍无名,但几十年后,他们的影响力,正在统治硅谷和华尔街。 是的,因为照片中还有一位当时的青椒博士生 Peter Brown ,他是Hinton的第一位博士研究生,现任顶尖量化基金文艺 ...
民生加银基金何江:AI重塑量化投资内核
Zhong Guo Ji Jin Bao· 2025-10-13 00:12
Core Insights - The article highlights the rapid advancement of AI in quantitative investment, with Minsheng Jianyin Fund as a pioneer in this "AI race" [1] - The firm has developed a "data-feature-strategy-portfolio" closed-loop system over four years, creating a unique competitive advantage in AI-driven quantitative investment [1][6] Group 1: AI Quantitative Investment Strategy - Minsheng Jianyin's AI quantitative strategy integrates market perception, engineering capabilities, and advanced algorithm applications [1] - The transition from traditional quantitative models to AI models allows for the capture of complex non-linear market relationships, enhancing predictive accuracy [5][7] - The firm emphasizes the necessity of AI in the survival of public funds, predicting a future ecosystem dominated by "AI-led quantification and tool-based index products" [10] Group 2: Market Opportunities and Performance - The National Securities 2000 Index is viewed as a valuable asset for technology upgrades and quantitative enhancement, with significant structural opportunities in AI and high-end manufacturing [2][8] - The Minsheng Jianyin National Securities 2000 Index Enhanced Fund has outperformed its benchmark, achieving returns of 17.18% and 49.66% over six months and one year, respectively [8] - The index's diverse composition and low pricing efficiency provide fertile ground for capturing alpha through quantitative strategies [8] Group 3: Challenges and Risk Management - AI models are not infallible; they rely on historical data and may face challenges during extreme market conditions, highlighting the importance of risk management [9] - The firm maintains that AI enhances human cognitive boundaries rather than replacing human judgment, allowing for the analysis of complex relationships among thousands of stocks [9]