Workflow
特色工艺
icon
Search documents
特色工艺,台积电怎么看?
半导体行业观察· 2025-05-13 01:12
Core Viewpoint - The semiconductor industry is shifting from a singular focus on process miniaturization to diversified innovation, with advanced packaging and specialty processes becoming key drivers for performance optimization and differentiation [1][2]. Group 1: Specialty Processes and Market Growth - The global specialty process market has surpassed $50 billion, with a compound annual growth rate (CAGR) of 15%, significantly outpacing the average growth rate of the semiconductor industry [1]. - Specialty processes focus on customized and diverse process optimizations, achieving a precise balance of performance, power consumption, and cost, particularly in demanding fields like automotive electronics and IoT [1]. Group 2: TSMC's Leadership in Specialty Processes - TSMC is establishing itself as a global benchmark in specialty processes through a combination of technological breadth and ecosystem depth, expanding its capabilities across various domains including automotive and RF technologies [2][4]. - TSMC's advanced logic technologies, such as N7A, N5A, and N3A, are specifically designed for automotive applications, ensuring high reliability and long lifecycle [4]. Group 3: Innovations in Embedded Non-Volatile Memory (eNVM) - TSMC is addressing the limitations of traditional eFlash memory by advancing RRAM and MRAM technologies, which are expected to replace eFlash in automotive and IoT applications [6][8]. - The introduction of RRAM and MRAM technologies allows for significant improvements in performance, reliability, and power efficiency, with TSMC's RRAM already in mass production at 40, 28, and 22 nm nodes [7][8]. Group 4: Competitive Landscape and Future Trends - Major MCU manufacturers are collaborating with foundries to leverage specialty processes, with companies like Infineon and NXP adopting eNVM technologies to enhance their product offerings [9][16]. - The market for embedded NVM is projected to grow rapidly, with wafer production expected to increase from approximately 3 KWPM in 2023 to about 110 KWPM by 2029, indicating a strong shift towards new storage technologies [26]. Group 5: Diverse Storage Technologies - Various new storage technologies, including eRRAM, eMRAM, and ePCM, are being explored by different manufacturers, each offering unique advantages in terms of speed, power consumption, and integration capabilities [30][32]. - The trend indicates a move towards a multi-storage technology ecosystem rather than a single dominant solution, reshaping the MCU landscape in the post-eFlash era [32].