智能体(Agent)
Search documents
AI重构C端医疗
硬AI· 2026-01-08 04:24
蚂蚁阿福与OpenAI health打开C端AI医疗想象空间。 硬·AI 作者 | 申思琦 编辑 | 硬 AI 医药投资圈曾流行一种偏见,投资人普遍认为数字医疗是个伪命题。 他们眼中的医疗需求存在一个"不可能三角":低频、高门槛、非标品。普通人不会天天看病,医生需要十年培养,每个人的病历都独一无二。 这导致互联网医疗平台常年陷于买流量的泥潭——获客成本极高,用户留存极低。 然而,这一刻板印象正在被AI时代的数据洪流无情击碎,C端的AI医疗需求实际上是极其惊人的,它一直都存在,只是过去缺乏一个足够低门槛、低成本且足够 智能的交互容器来承接。 当交互成本降至零,且反馈质量达到准专业级时,AI医疗这种沉默的刚需瞬间爆发了。 在两个AI超级巨头的动作中看到了这种爆发,一个是中国的蚂蚁集团,一个是美国的OpenAI。 在中国, 蚂蚁集团旗下的"阿福",其 月活跃用户数已在一个月内翻倍突破3000万,单日提问量超过1000万次 。 大洋彼岸,OpenAI于2026年1月7日正式推出OpenAI Health。 OpenAI的数据显示, 全球每周有超过2.3亿人次在ChatGPT上咨询健康问题。这甚至发生在该产品推出之前, ...
年终字述|关键字:韧 韧性闯关奔赴星海 投资于人赢得未来
Sou Hu Cai Jing· 2025-12-31 01:21
关键字:韧 韧性闯关奔赴星海 投资于人赢得未来 在中央关于制定"十五五"规划的《建议》中,确立了"十五五"我国"坚持扩大内需这个战略基点,坚持 惠民生和促消费、投资于物和投资于人紧密结合"的指导思想。这意味着我国未来发展将转向以促进人 的全面发展为目的的内需主导模式。 "投资于人"是指将更多的财政资金和公共资源投向教育、就业、医疗、文化、社会保障等民生领域,投 入到人的知识获取、能力提升、健康维护、职业发展和潜力开发中,将"人力资源"转化为可持续增值 的"人力资本",将"人口红利"转化为"人才红利"。"投资于人"所获得的劳动者个体素质能力提升和人力 资本价值增值,不仅是人的全面发展的重要内容,也是社会财富增值乃至经济社会发展的重要源 泉。"投资于人"通过为广大劳动者提供更加丰富的公共产品供给和社会保障,降低生活成本,进而增强 全社会的心理预期,提高全社会的消费信心,以消费潜力释放和人力资本提升推动经济高质量发展。同 时,"投资于人"所作用的教育、医疗、文化、社会保障等领域也是社会主义现代化建设的重要领域,是 联合国提出的衡量一国现代化发展水平的人类发展指数(HDI)的重要指标。可以说,"投资于人"投的 是当下 ...
百万人围观,「上下文图谱」火了,万亿美元新机遇?
机器之心· 2025-12-28 09:00
编辑|张倩、陈陈 当智能体(Agent)开始深度介入人类世界,关于豆包 AI 手机的讨论可能只是个开始。 在此之前,手机、电脑软件都是给人用的 —— 人负责一步步操作,系统负责把信息存好、算好。但现在,Agent 开始接过这些操作:你只需要说清楚目标,它就 能自己去打开应用、填信息、做选择,最后把结果交给你确认。 这就引发了一个问题:当人不再需要亲自点每一步,原本围绕「人来操作」设计的软件、系统还有没有存在的必要?除了豆包 AI 手机这样的 to C 场景,其实企业 也在争论这个问题。 最近的讨论集中在一个叫「记录系统(Systems of record)」的东西上面。有人说 Agent 杀死了记录系统,也有人说 Agent 只是提高了「好的记录系统」的标准, 还有人说,围绕 Agent 执行流程而搭建的新型「记录结构」,背后隐藏着万亿美元的机会。 那么,记录系统到底是什么?围绕它的机会存在于哪里?我们总结了几篇相关文章,试图详细分析这些问题。 记录系统已死? 企业里的记录系统,说白了就是公司的「总账本」和「黑匣子」。谁做了什么、什么时候做的、数据改过几次、流程走到哪一步,都会被它原样记下来,方便之 后对账、 ...
火山引擎FORCE大会追踪(2):Agent规模化落地,方舟与企业底座升级
Haitong Securities International· 2025-12-21 14:15
wo[Table_Title] Research Report 21 Dec 2025 中国电子 China (Overseas) Technology 火山引擎 FORCE 大会追踪(2): Agent 规模化落地,方舟与企业底座升 级 Volcengine FORCE(2): Scaling Agents to Production: Upgrades to Volcano Ark and Enterprise Foundations 姚书桥 Barney Yao 吕小潼 Xiaotong Lyu barney.sq.yao@htisec.com xt.lyu@htisec.com [Table_yemei1] Flash Analysis [Table_summary] (Please see APPENDIX 1 for English summary) 风险: 事件 2025 年 12 月 18 日,火山引擎在 2025 冬季 FORCE 原动力大会上发布了面向多模态 Agent 场景优化的豆包大模型在 2025 FORCE 原动力大会开发者日(上海)上,火山引擎围绕智能体(Agent)规模化生产与 ...
官宣!姚顺雨出任腾讯首席AI科学家,带队大语言模型、AI Infra
机器之心· 2025-12-17 09:42
Core Insights - OpenAI researcher Yao Shunyu has joined Tencent, igniting discussions in the AI community [1] - Tencent has upgraded its large model research framework, establishing new departments to enhance its capabilities [2][3] Group 1: Organizational Changes - Tencent has formed the AI Infra Department and AI Data Department to strengthen its large model research and core capabilities [2] - Yao Shunyu has been appointed as the Chief AI Scientist, reporting to Tencent's President Liu Chiping, and will also lead the AI Infra Department and the large language model department [2][5] Group 2: Department Responsibilities - The AI Infra Department will focus on building technical capabilities for large model training and inference platforms, emphasizing distributed training and high-performance inference services [3] - The AI Data Department and Data Computing Platform Department will be responsible for constructing data and evaluation systems for large models and integrating big data with machine learning [4] Group 3: Yao Shunyu's Background - Yao Shunyu is a prominent young researcher in the field of artificial intelligence, particularly in the area of intelligent agents [6] - Prior to joining OpenAI, he made significant contributions in the field of language intelligent agents and has a total citation count exceeding 19,000 for his papers [7]
别吹了,智能体Demo能跑通和能上线,是两码事!| 极客时间
AI前线· 2025-12-16 09:40
然而,下一波真正的浪潮已经涌现:智能体(Agent)时代。这里的"智能体",不是简单的聊天机器 人。它指的是 以大型语言模型为认知引擎,具备自主决策、目标导向和环境交互能力的 AI 系统。 从 ChatGPT 到 Claude,从文心一言到 DeepSeek,我们已习惯与各种 Copilot 协作。它们能力惊 人,但本质仍是 被动响应 的工具——我们发出指令,它们返回结果。 "我看到很多开发者卡在'只会调 API'的层面,这非常可惜。AI 智能体的底层,是一套精密的 系统工程。掌握它,意味着你能从'工具的使用者'转变为'智能系统的创造者'。这不仅是技能 的提升,更是思维模式的跃迁。" 想象一下: 这就是 Agentic AI ——未来最炙手可热的技术方向,也是拉开下一代 AI 应用差距的关键。 热潮之下,开发者真正的 挑战是什么? 智能体开发就像一座冰山。水面之上,是大家熟悉的"调 API、写 Prompt";水面之下,才是真正的 复杂性所在: 这些,才是考验开发者能否将炫酷概念转化为真实价值的核心能力。面对这片充满机遇但略显复杂的 海域,一位资深的技术"引路人"—— 王延飞老师 ,分享了他的观察。 作为一位 ...
下一个十年的AI发展图景
Zhong Guo Qing Nian Bao· 2025-12-07 22:52
今年8月,国务院印发《关于深入实施"人工智能+"行动的意见》为我国推动人工智能与经济社会各行业 各领域广泛深度融合提供了指引。10月28日发布的《中共中央关于制定国民经济和社会发展第十五个五 年规划的建议》中再次明确:"深入推进数字中国建设""加快人工智能等数智技术创新""全面实施'人工 智能+'行动,以人工智能引领科研范式变革,加强人工智能同产业发展、文化建设、民生保障、社会治 理相结合,抢占人工智能产业应用制高点,全方位赋能千行百业"。 从线上人工智能(以下简称"AI")大模型与教育、医疗、金融等各行各业深度绑定,持续刷新行业效率 上限;到线下具身智能机器人在工厂协作、社区养老、家庭服务中崭露头角,为人类生产生活带来无限 可能……2025年,人工智能正以前所未有的速度穿透虚拟与现实、串联技术与产业,也让人们不禁畅 想,AI技术的未来发展还能带来怎样的惊喜。 不过,在AI技术打破人机边界的背后,安全治理也成为不可忽视的命题。姚期智提醒,AI算法潜在的 不可靠性可能引发隐私泄露、冲击社会价值伦理等风险。"目前中外正在探索将AI与密码学、博弈学等 理论结合的交叉领域,凝聚国际共识,携手构建AI治理协议。"姚期智 ...
云计算一哥AWS的新战事:10分钟发布25款新品,全面押注智能体
3 6 Ke· 2025-12-04 00:19
Core Insights - AWS is at a pivotal moment, focusing on transforming AI from an assistant role to a more capable agent role, aiming to deliver real business value to enterprise customers [1][18]. Group 1: Computing Power - AWS has adopted a more pragmatic and aggressive strategy in computing power, significantly reducing costs with self-developed chips and breaking physical boundaries to accommodate large clients who prefer not to migrate to the cloud [4]. - The introduction of Trainium 3 UltraServers has improved inference efficiency by five times compared to its predecessor, with Trainium 4 promising a further sixfold performance increase [4][27]. - AWS AI Factories have been launched to address data sovereignty concerns by allowing clients to build AWS's computing infrastructure directly in their data centers [4]. Group 2: Model Development - AWS has completed its Amazon Nova self-developed model family with the release of the Amazon Nova 2 series, which includes the first multimodal model capable of processing text, images, audio, and video inputs [6]. - The Amazon Nova Forge introduces the concept of "open training models," allowing enterprises to inject proprietary data during the final stages of model pre-training, enhancing the model's capabilities without losing core competencies [6][37]. Group 3: Application Layer - AWS is addressing the uncontrollable nature of AI agents by implementing a robust policy framework, AgentCore Policy, to ensure agents act as reliable productivity tools [7][45]. - The Frontier Agents series has been introduced, which includes autonomous agents capable of performing tasks such as bug fixing and security scanning, indicating a shift in software engineering lifecycle management [7][41]. - The AgentCore platform is designed to facilitate the secure and scalable deployment of agents, with features that allow for real-time monitoring and control of agent actions [41][44]. Group 4: Business Growth and Infrastructure - AWS reported an annual revenue of $132 billion, with a growth rate of 20%, indicating strong business performance and market leadership in cloud computing [10]. - The company has expanded its global data center network, adding 3.8 GW of capacity in the past year, which is the largest in the industry [13]. - AWS's collaboration with various partners, including startups and established companies, highlights its role in driving innovation across multiple sectors [14].
实测豆包手机助手:比价点外卖、自动回微信,AI 操作手机的时代来了?
晚点LatePost· 2025-12-01 03:01
Core Viewpoint - ByteDance is developing the Doubao mobile assistant, which integrates AI capabilities to automate complex mobile tasks, enhancing user experience and interaction with smartphones [3][36]. Group 1: Doubao Mobile Assistant Features - The Doubao mobile assistant allows users to perform tasks that typically require multiple screen taps through voice commands or minimal manual input [3][5]. - It can execute cross-application operations, such as comparing prices across different food delivery platforms and automatically gathering information [5][9]. - The assistant has a "correction mechanism" that allows it to attempt to complete tasks even when faced with obstacles, such as pop-up windows [20]. Group 2: User Interaction and Experience - Users can summon the Doubao assistant using a dedicated physical button, which overlays the current app without interrupting ongoing activities [23][28]. - The assistant can read chat contexts and generate responses, allowing for seamless communication without manual typing [25][33]. - It can also perform scheduled tasks, such as checking trending topics on social media and saving information for later use [18][32]. Group 3: Market Position and Collaboration - ByteDance is collaborating with multiple smartphone manufacturers to integrate the Doubao assistant into their devices, indicating a shift towards partnerships with external AI model providers [4][36]. - The assistant's development reflects a broader industry trend where smartphone companies are seeking to enhance their AI capabilities through collaborations rather than solely relying on in-house development [36][37]. - The assistant's current performance shows room for improvement, particularly in executing tasks more efficiently compared to manual operations [36][37].
南财快评|如何看待美股AI估值争议?
2 1 Shi Ji Jing Ji Bao Dao· 2025-11-21 11:28
Core Viewpoint - Nvidia's third-quarter earnings report exceeded expectations, with revenue of $57.01 billion and net profit of $31.91 billion, reflecting year-on-year growth of 62% and 65% respectively, which may alleviate concerns about AI industry valuations in the stock market [2] Group 1: Financial Performance - Nvidia's Q3 revenue was $57.01 billion, surpassing market expectations of $54.92 billion, and showing a year-on-year increase of 62% [2] - The net profit for the same period was $31.91 billion, marking a significant year-on-year increase of 65% [2] Group 2: Market Dynamics - The current AI boom in the U.S. is largely driven by supply-side investments from major tech companies like Microsoft, Google, and Meta, which are heavily investing in Nvidia's GPUs to build computing power centers [2] - There are concerns that the capital expenditures for AI infrastructure are exceeding current actual demand, drawing parallels to the internet bubble of 2000 [3] Group 3: Technological Evolution - Historical tech revolutions often experience bubbles as a necessary phase, with capital flowing in before technology matures, which can lead to resource misallocation but also provides funding for technological advancements [3] - The accumulation of computing power globally may be a necessary step towards achieving Artificial General Intelligence (AGI) [3] Group 4: Future Challenges - The tech giants are entering a challenging phase where the expectations for technology commercialization must catch up with rising anticipations [4] - Investors are increasingly demanding tangible revenue and profit margins rather than just optimistic future projections, indicating a shift in focus from merely accumulating computing power to demonstrating real profitability [4] Group 5: Valuation Concerns - A potential resolution to the current valuation debate could involve a "time for space" process, where gradual technology application leads to more reasonable valuations, requiring patience from market investors [5]