Workflow
微生物细胞工厂
icon
Search documents
浙大于洪巍/叶丽丹组:高产维生素A酿酒酵母菌株构建
Core Viewpoint - Vitamin A is essential for human health, supporting vision, immune regulation, and serving as a key ingredient in anti-aging cosmetics. Traditional chemical synthesis methods for Vitamin A are complex and costly, leading to a shift towards green biomanufacturing using synthetic biology techniques [1][6]. Group 1: Research Findings - A recent study by Zhejiang University has engineered yeast to enhance Vitamin A production by modifying transporter systems, energy metabolism, and precursor supply networks, achieving unprecedented yields [1][6]. - The hydrophobic nature of Vitamin A leads to accumulation within cells, increasing metabolic burden and affecting synthesis efficiency. Approximately 17-20% of retinol remains unextracted during high-density fermentation, limiting production [2]. - The research team introduced transporter engineering strategies, identifying key transport proteins that facilitate the synthesis and secretion of retinol, retinal, and retinoic acid [2]. Group 2: Engineering Strategies - The team optimized the yeast's energy metabolism by overexpressing FZO1 and MGM1 to enhance mitochondrial fusion and introducing Vgb to improve oxygen uptake, thereby increasing ATP levels and energy supply [3]. - A multi-faceted engineering approach, combining transporter engineering, energy metabolism enhancement, and precursor supply optimization, led to significant breakthroughs in yeast strains for Vitamin A production [3][4]. Group 3: Production Results - Post-engineering, the yeast strain achieved a retinal yield of 638.12 mg/L with an extracellular ratio of 98.7%, and a retinoic acid yield of 106.75 mg/L, both representing the highest reported shake flask yields to date [4]. - The engineered yeast strain produced 727.30 mg/L of retinol with a carbon conversion rate of 7.62% using 20 g/L glucose, surpassing previous best strains [4]. Group 4: Implications for Industry - This research provides new insights for the efficient biomanufacturing of Vitamin A and serves as a reference for the green production of other high-value lipophilic products [6]. - As synthetic biology technologies advance, microbial cell factories are expected to play a crucial role in future biomanufacturing, contributing to human health and sustainable development [6].
医药与生物制造专题抢先看:合成生物+医药,能否成为下一个经济增长极?
近年来,合成生物学技术迭代更新迅猛,与生物医药产业深度融合,在 药物研发、疾病诊疗和绿色可 持续生产 等关键领域展现出巨大潜力与广阔市场空间。在疾病诊断方面,合成生物学为早期、精确诊 断提供了创新思路与技术支撑;在疾病治疗方面,基于合成生物学原理的细胞疗法、细菌疗法、新型疫 苗和生物医学材料等前沿成果不断涌现,为患者带来新希望。据相关数据显示,2023年全球合成生物学 市场规模已突破 170亿美元 ,其中医疗健康领域约 64亿美元 ,占比近 40% 。未来合成生物学在医疗健 康领域的应用规模有望持续攀升,预计到2028年将达到 133亿美元 。随着基因编辑、高通量测序、生物 信息学和人工智能等技术的不断进步,合成生物学在医药领域的应用场景将不断拓展,为医药产业的转 型升级提供强大动力。 2025第二届合成生物制造创新发展大会 将于 2025年5月22-23日 在 上海浦东喜来登由由大酒店 盛大启 幕。本次大会以" 合成新'基'遇,智造赢未来 "为主题,邀请全球生物制造领域的专家、企业家和科研 机构,聚焦合成生物技术在 医药、食品、化妆品、新材料、AI方向 的应用,共同探讨生物制造技术的 发展趋势、市场机遇与挑 ...