绿色生物制造

Search documents
袁其朋教授:高效细胞工厂构建生产芳香族化合物 | SynBioCon 2025
合成生物学与绿色生物制造· 2025-07-10 14:45
芳香族化合物是现代物质文明的重要支撑,在材料、食品、医药、化妆品等领域应用广泛,传统生产方法存在资源不可持续、生产过程污染重等问题。 因此,芳香族化合物的绿色生物制造是实现人类社会可持续发展的重要路径。 实现芳香族化学品的生物合成规模化生产通常制约于细胞工厂合成产品产率低、产量低、细胞耐受性差、生产强度低等关键瓶颈问题。因此, 构建高效 细胞工厂 是其技术和产业化关键要素。 对此, 北京化工大学袁其朋教授团队 构建了高版本芳香族化合物合成底盘,突破了天然理论收率。设计构建了对 乙酰氨基酚 、 香豆素、对羟基苯乙 酮等二十余种 重要芳香族化合物的细胞工厂;提出了驱动力强化细胞工厂合成能力的策略,大幅度提升了 熊果苷、阿魏酸等 的合成能力。通过系统集 成建立了 熊果苷、五羟色氨酸等的工业生产线 ,展现了合成生物学的无限潜力,为芳香族化合物绿色生物制造提供了参考。 对此, 袁其朋教授 将出席8月20-22日在宁波举办的 SynBioCon 2025第四届合成生物绿色生物制造大会 「未来食品&农业论坛」 分享 《高效细胞 工厂构建生产芳香族化合物》 。 Syn B ioCon 2 025 自 科技成果展示与对接 > ...
3亿元! 内蒙古瑞芬生物年产3万吨功能糖醇生产基地项目备案
合成生物学与绿色生物制造· 2025-07-06 04:05
项目拟投资3亿,建设综合楼、研发中心、库房、车间、门卫、监控室、消防控制室及相关能源配套系统。项目建成年产3万吨功能性糖醇。 瑞 芬生物作为D-阿洛酮糖-3-差向异构酶在国内 第三家获批 的企业,标志着其在功能性代糖领域的突出技术突破。其突破不仅体现在阿洛酮糖的合 法化生产,更核心的是在酶催化技术这一关键环节实现了自主可控 。 项目进展 | 瑞芬生物 【SynBioCon】 获 悉 , 近日,内蒙古瑞芬生物科技有限公司 年产3万吨功能糖醇生产基地项目 在相关网站备案公示。 据悉,4月26日,呼和浩特经济技术开发区与北京瑞芬生物科技有限公司签署《瑞芬生物合成生物产业基地项目》合作协议书。此次签约项目总投资约 4亿元,分两期建设年产2万吨糖醇生产基地,一期计划用地120亩,于今年6月开工,2025年11月完成基础建设,2026年3月正式投产。 瑞芬生物创新研发中心(IDEALab)设立于北京,现有3个生产基地,分别位于陕西杨凌、安徽滁州和山东曲阜。 目前滁州基地阿洛酮糖1千吨,待投 产能1万吨,赤藓糖醇产能1.5万吨 。 关于瑞芬生物 成立于2007年,是国家级高新技术企业,始终致力于天然健康食品配料及配料系统的 ...
南京工大陈可泉:利用可再生原料生物合成脂肪族短链二元胺与醇的研究进展
合成生物学与绿色生物制造· 2025-07-03 09:52
Core Viewpoint - The article discusses the advancements in green bio-manufacturing, particularly focusing on the synthesis of aliphatic short-chain diamines and diols from renewable resources, highlighting the importance of reducing reliance on fossil resources and addressing environmental concerns [3][4][5]. Group 1: Importance of Green Bio-Manufacturing - The chemical industry is a significant part of the national economy, with over 100,000 types of fine chemical products globally. Traditional production methods heavily rely on fossil resources, leading to resource depletion and CO2 emissions [4]. - Transitioning to renewable resources for bio-manufacturing is crucial for achieving a clean, low-carbon, and sustainable environment. China has set goals to replace traditional chemical raw materials with bio-based materials [4][5]. Group 2: Advances in Bio-Synthesis - Significant progress has been made in the bio-synthesis of 1,3-propanediamine, 1,4-butanediamine, and their corresponding diols, with commercial applications already realized by companies like DuPont and Genomatica, achieving cost reductions of 37% and energy savings of 30% compared to petrochemical processes [5][6]. - Companies such as Ningxia Yipin Biotechnology and Shanghai Kaisi Bio-Industry have successfully scaled up the production of 1,5-pentanediamine using whole-cell catalysis, claiming a 30% cost reduction compared to traditional methods [5][6]. Group 3: Challenges in Bio-Synthesis - Despite advancements, challenges remain in the bio-synthesis of most diamines and diols, including high production costs and the lack of natural biosynthetic pathways for certain compounds [6][7]. - Research is focused on developing bio-synthesis routes using non-food biomass and one-carbon feedstocks to reduce fossil resource dependence and CO2 emissions [6][7]. Group 4: Metabolic Pathways and Carbon Cycling - The article outlines the carbon cycling and metabolic pathways involved in utilizing renewable resources for bio-manufacturing, emphasizing the role of biomass derived from agriculture, forestry, and waste [8][9]. - Various metabolic pathways for sugars derived from lignocellulosic biomass have been identified, which can be utilized for synthesizing short-chain diamines and diols [11][13]. Group 5: Synthesis Routes for Specific Compounds - Detailed synthesis routes for 1,3-propanediamine and 1,3-propanediol are discussed, highlighting the use of key amino acid precursors and various microbial pathways [20][21]. - The synthesis of 1,4-butanediamine and 1,4-butanediol involves multiple pathways, including those utilizing ornithine and arginine, with significant advancements in microbial engineering to enhance yields [23][24]. - The article also covers the synthesis routes for 1,5-pentanediamine and 1,5-pentanediol, focusing on the use of lysine as a precursor and the challenges in achieving high yields [25][26].
生物制造领域 “潜力股” 团队?生物制造青年论坛,报告征集中!8月20-22日宁波
合成生物学与绿色生物制造· 2025-07-02 14:35
Core Viewpoint - The article highlights the upcoming "Youth Forum on Biomanufacturing" scheduled for August 20 in Ningbo, Zhejiang, as part of the SynBioCon 2025 event, aimed at promoting innovation and collaboration in the field of synthetic biology and biomanufacturing [2][3]. Group 1: Event Details - The "Youth Forum on Biomanufacturing" will focus on addressing scientific issues, solutions, achievements, scalability, and future directions in the research field [3]. - The event will take place on August 20, 2025, with limited seating available (only 30 seats) [6]. - Participants can choose to register for either the Youth Forum or the Technology Achievement Showcase [6]. Group 2: Participation and Contributions - The event encourages universities and research institutions to apply for sharing their innovative achievements [4]. - SynBioCon 2025 will also feature a "Technology Achievement Showcase" to publicly collect 100 innovative achievements and projects in the field of synthetic biology and biomanufacturing for on-site display and networking [6]. Group 3: Organizers and Previous Events - The event is organized by Ningbo Detaizhongyan Information Technology Co., Ltd. (DT New Materials) and co-organized by Ningbo Meisai Biological Engineering Co., Ltd. [11]. - Previous editions of the SynBioCon were successfully held in 2022, 2023, and 2024 in Ningbo, showcasing the growing interest and development in the field [13].
生物制造青年论坛,报告征集中!聚焦科技成果对接,8月20-22日宁波
合成生物学与绿色生物制造· 2025-06-25 12:35
SynBioCon 大会 | 生物制造青年论坛 特色专场 生物制造青年论坛 8月20日,浙江·宁波 02 科技成果展示与对接专场 (同期活动) SynBioCon 2025 将设置 「科技成果展示与对接」专场 (现场展示科技成果推介墙), 公开征集100个从0—1—100的合成生物和生物制造领域创新成果 和项目 ,于现场展示、对接。 生物制造领域有哪些 "潜力股" 团队、技术和产品值 得关注? 为发掘合成生物学和生物制造科研团队创新成果、 促进生物制造领域优秀科研工作者成果交流和产业方对接, 第四届合成生物与绿色生物制造大会 (简称: SynBioCon 2025 ) 同期将举办特色专场——" 生物制造青年论坛 ",于8月20日在浙江宁波举办。 助力行业 15分钟了解一个方向 ,重点阐述研究领域存在的科学问题、解决思路、成果、放大可行性以及未来发展方向。 欢迎高校、科研院所申报分享! 扫码报名,请选择参会形式 报名请选择:青年论坛、科技成果展示 SynBioCon 2 025 8月20-22日,浙江·宁波 01 论坛信息 时 间: 8月20日(周三) 席 位 : 仅 30 席! 报告时间: 第一场:13:30 ...
独家专访 | 二十年磨一剑!他打破PHA成本困局,携万吨级技术回国圆梦!
DT新材料· 2025-06-24 15:32
Core Viewpoint - The article discusses the innovative approach of Yike Biotech in reducing the cost of PHA (polyhydroxyalkanoates) production to compete with petroleum-based materials, emphasizing the use of non-food plant oils as raw materials [3][4][9]. Group 1: Industry Background - The biodegradable materials market, including PLA and PBAT, has faced challenges such as overcapacity and performance limitations, leading to a decline in production rates [6][7]. - PHA is highlighted for its advantages, including marine biodegradability, heat resistance up to 100°C, and excellent barrier properties, with the global market expected to reach $367 million by 2030 [6][8]. Group 2: Company Overview - Yike Biotech was founded in June 2025 by Dr. Wilson Ling, who aims to revolutionize PHA production using non-food oils, specifically Pongamia oil, to significantly lower costs [9][10]. - The company has completed laboratory and pilot-scale validations of its production process and is the first globally to hold a PCT patent for PHA production [37]. Group 3: Cost Reduction Strategy - The raw material cost constitutes over 50% of PHA production costs, making it essential to lower these costs. Traditional sugar-based routes have a conversion rate of only 30%, leading to high costs [27][28]. - By using Pongamia oil, which has a conversion rate of over 80%, Yike Biotech can reduce PHA production costs by 30-50% compared to sugar-based methods [36]. Group 4: Technical and Market Development - Yike Biotech plans to focus on medical products for the Australian market, where demand is high, and the approval process is faster compared to other regions [38]. - The company aims to establish a production line in China that can replace 15,000 to 20,000 tons of petroleum-based plastics annually, with plans for further expansion [39].
浙大于洪巍/叶丽丹组:高产维生素A酿酒酵母菌株构建
合成生物学与绿色生物制造· 2025-06-24 08:25
Core Viewpoint - Vitamin A is essential for human health, supporting vision, immune regulation, and serving as a key ingredient in anti-aging cosmetics. Traditional chemical synthesis methods for Vitamin A are complex and costly, leading to a shift towards green biomanufacturing using synthetic biology techniques [1][6]. Group 1: Research Findings - A recent study by Zhejiang University has engineered yeast to enhance Vitamin A production by modifying transporter systems, energy metabolism, and precursor supply networks, achieving unprecedented yields [1][6]. - The hydrophobic nature of Vitamin A leads to accumulation within cells, increasing metabolic burden and affecting synthesis efficiency. Approximately 17-20% of retinol remains unextracted during high-density fermentation, limiting production [2]. - The research team introduced transporter engineering strategies, identifying key transport proteins that facilitate the synthesis and secretion of retinol, retinal, and retinoic acid [2]. Group 2: Engineering Strategies - The team optimized the yeast's energy metabolism by overexpressing FZO1 and MGM1 to enhance mitochondrial fusion and introducing Vgb to improve oxygen uptake, thereby increasing ATP levels and energy supply [3]. - A multi-faceted engineering approach, combining transporter engineering, energy metabolism enhancement, and precursor supply optimization, led to significant breakthroughs in yeast strains for Vitamin A production [3][4]. Group 3: Production Results - Post-engineering, the yeast strain achieved a retinal yield of 638.12 mg/L with an extracellular ratio of 98.7%, and a retinoic acid yield of 106.75 mg/L, both representing the highest reported shake flask yields to date [4]. - The engineered yeast strain produced 727.30 mg/L of retinol with a carbon conversion rate of 7.62% using 20 g/L glucose, surpassing previous best strains [4]. Group 4: Implications for Industry - This research provides new insights for the efficient biomanufacturing of Vitamin A and serves as a reference for the green production of other high-value lipophilic products [6]. - As synthetic biology technologies advance, microbial cell factories are expected to play a crucial role in future biomanufacturing, contributing to human health and sustainable development [6].
独家专访 | 二十年磨一剑!他打破PHA成本困局,携万吨级技术回国圆梦!
合成生物学与绿色生物制造· 2025-06-23 12:35
DT产业研究院 | 宜可生物 创始人 文 | 陈竞芬 "有关环保的事,我们要第一个先做, 还必须做到最好。Ecopha=Eco+ Alpha=Eco+ PHA。 " 眼前这位头发微白却目光如炬的科学家,二十年间辗转新加坡、马来西亚、澳大利亚,如今回到中 国,创立 宜可生物 ,只为攻克一个难题: 把PHA的成本降到能与石油基材料竞争 。 他将如何做到大幅降低成本? 近日, DT新材料产业研究院行业分析师陈竞芬 对 宜可生物创始人林理坪博士 进行了独家专访, 他不仅分享了其在海外科研和创业,以及回国创业的初心,更分享了宜可生物将如何降低PHA成 本,为行业提供极具价值的专业洞见。此前,DT新材料第一时间报道了宜可生物的成立。 全球第一家专利!又一企业布局 PHA 生物塑料! 左:宜可生物创始人 林理坪(Wilson Ling)博士,右:DT新材料行业分析师 陈竞芬 "限塑令"后,PLA、PBAT等可降解材料曾短暂炙手可热,随即陷入产能过剩(2024年PBAT开工率 不足20%)。更深层的问题是性能瓶颈:PLA/PBAT因耐热性差(60-70℃)、降解依赖工业堆肥, 难替代传统石油基塑料,如全球用量最大的塑料PP、 ...
33亿!星湖科技45万吨氨基酸项目最新规划
合成生物学与绿色生物制造· 2025-06-15 13:33
# 项目进展 | 星湖科技 【SynBioCon】 获 悉,6月14日,国内氨基酸头部企业 星湖科技 (600866.SH) 公告称,公司计划通过控股子公司黑龙江伊品生物科技有限公司和黑龙江伊品能 源有限公司,在黑龙江省大庆市投资不超过 33亿元 , 建设45万吨氨基酸及配套工程项目 。项目预计建设周期为22个月,资金来源为自有资金与银行贷款融 资各占50%。预估项目达产后在满产满销的情况下,预计可实现年销售收入约39亿元。 项目信息 1. 项目名称:45 万吨氨基酸及配套工程项目 2. 项目建设地点: 黑龙江省大庆市杜尔伯特蒙古族自治县经济开发区,拟用地约为 483亩,最终以实际建设用地面积为准 4. 项目建设内容: (1) 45 万吨氨基酸产线: 新建年产 45 万吨氨基酸产线,主要产品为: 饲料级苏氨酸 20 万吨、味精 25 万吨,及配套生产相关副产品 。 (2) 配套工程: 为项目及公共供热供电,在现有配套设施的基础上,续建配套热电联产和公共生产服务设施。 5. 项目投资金额: 项目总投资不超过 33 亿元人民币。其中,新建 45 万吨氨基酸产线约 29.5 亿元,配套工程续建约 3.4 亿元。 6 ...
工信部等两部门:2027年生物制造中试平台达20个以上!
合成生物学与绿色生物制造· 2025-06-11 10:22
#全球政策进展 | 工信部 【SynBioCon】 获 悉,6月11日, 工业和信息化部办公厅 、 国家发展改革委办公厅 发布《关于开展生物 制造中试能力建设平台培育工作的通知》(下称:《通知》)提到,培育 食品及添加剂、生物制药、化妆品、 化工、能源、酶制剂等 重点产品领域的 三大类型 中试平台。 其中提出,立足产业现状和发展需求,布局相适应的中试能力和服务体系,鼓励国家级实验室、国家级科 技创新平台打造中试能力建设平台。坚持市场主导、需求引导。围绕技术研发、成果转移和商业化应用各 环节重大需求和典型场景开展针对性培育,鼓励中试平台按照市场化原则开展有偿服务并实现稳定运营。 坚持规范引领、安全可靠。完善中试装备标准体系和中试服务规范流程,增强平台数据安全、生物安全保 障能力。 到2027年,力争培育中试能力建设平台20个以上,服务企业数量超过200家,孵化产品400个以 上,有力支撑创新成果的"小试验证—中试扩大—产业化应用" 。 通知提出,立足生物制造产业化现状和技术发展需求,聚焦生物制造各领域中试环节的短板和痛点,根据 技术工艺装备特点,培育 食品及添加剂、生物制药、化妆品、化工、能源、酶制剂等重点产品 ...