Workflow
6G芯片
icon
Search documents
6G芯片,新突破
半导体行业观察· 2025-05-22 02:13
Core Viewpoint - A recent study led by the University of Bristol highlights a breakthrough in semiconductor technology that could enable advanced applications such as autonomous vehicles, remote medical diagnostics, and immersive virtual experiences, all relying on faster data communication and transmission capabilities [1][2]. Group 1: Semiconductor Breakthrough - The transition from 5G to 6G requires a complete upgrade of semiconductor technology, circuits, systems, and related algorithms [2]. - A new architecture has been tested that enhances GaN (Gallium Nitride) RF amplifiers, achieving unprecedented performance due to a latch effect discovered in GaN [2][3]. - The new devices utilize parallel channels with sub-100 nanometer fins to control current flow, demonstrating high performance in the W-band frequency range (75 GHz to 110 GHz) [2]. Group 2: Future Applications and Implications - The potential applications of the latch effect in GaN devices could significantly impact various sectors, including healthcare, education, and transportation, by enabling remote diagnostics, virtual classrooms, and enhanced road safety [1][3]. - The research team is focused on improving the power density of these devices to serve a broader user base and is collaborating with industry partners to commercialize the next-generation devices [3].
6G芯片,出现突破
半导体行业观察· 2025-03-16 03:06
如果您希望可以时常见面,欢迎标星收藏哦~ 来源:内容编译自spectrum,谢谢。 太赫兹波被认为是一种强大的工具,可以在潜在的 6G 网络中快速传输大量数据,并像 X 射线一样 穿透固体物质——而且没有危险的电离辐射。然而,事实证明,将这些想法真正付诸实践非常困 难。现在,一个研究小组表示,他们正在利用一种可以将强大的太赫兹波放在芯片上的设备,让太 赫兹梦想更接近现实。 太赫兹波位于微波和远红外光之间电磁波谱中被忽视的部分,通常在 0.1 到 10 太赫兹的范围内。除 了能够穿透许多材料之外,太赫兹波的频率比无线电波更高,这使得它们能够传输更多信息。太赫 兹波的缺点是利用它们的物理条件具有挑战性。它们很快就会被空气中的水蒸气吸收,在铜等常用 的电子材料中会损耗,而且产生这些频率的方法通常很大或只能以低功率产生它们。 由于硅和空气的介电常数不同,在芯片中产生太赫兹波时,这个问题就很明显了。介电常数是指材 料集中电场的能力。当波遇到介电常数不同的材料边界时,一部分波会被反射,一部分会被透射。 材料之间的对比度越大,反射越大。硅的介电常数为 11.9,远高于空气 (1),因此,太赫兹波会在 硅和空气的界面处反射。 ...