Workflow
人工智能+材料
icon
Search documents
第九届材料基因工程国际论坛将于11月19-23日在陕西西安召开
Sou Hu Cai Jing· 2025-11-04 14:15
材料基因工程国际论坛自2017年至今已成功举办8届,共有310余位(次)海内外院士,超过20个国家和 地区的410余位(次)海外代表、8000余位(次)国内代表参会。论坛促进了材料高效计算、先进实验 和大数据等颠覆性关键技术的发展和应用,推动了材料智能研发新理念、新范式的形成和"AI+材料"产 业变革,在国内外产生了较大影响。 为了进一步促进材料基因工程基础理论、前沿技术和关键装备的发展,加速材料领域"人工智能+"科技 创新和产业应用,由全国新材料大数据创新联盟、中国材料研究学会主办,西北工业大学、西北有色金 属研究院、西安交通大学、北京科技大学、北京云智材料大数据研究院等联合承办的"第九届材料基因 工程国际论坛"定于2025年11月19-23日在陕西省西安市召开。 论坛主题 1.材料高效计算与智能设计 (集成计算/跨尺度计算/自主计算等) 2.材料变革性实验技术 (高通量/自动/自主/智能实验等) 3.材料科学智能与大模型(AI for Materials) 4.材料大数据与数据资源 5.材料产业智能化发展与应用 时间节点 11月09日:在线注册、墙报提交截止 11月19日:现场注册(陕西宾馆18号楼) 1 ...
新材料研发提速,上交大团队开发新AI材料设计模型CGformer,融合全局注意力机制
3 6 Ke· 2025-09-29 07:26
上海交通大学人工智能与微结构实验室李金金教授和黄富强教授团队研发出全新 AI 材料设计模型 CGformer,成功突破传统晶体图神经网络局限。 人工智能正深刻重塑材料科学研发范式,在加速新材料发现与性能优化中展现出突破性价值。通过高通量计算与机器学习的深度融合,传统「试错法」存 在的实验周期长、资源消耗大等痛点被有效破解,材料探索进入到「计算驱动-实验验证」的高效迭代阶段。然而随着人类技术和生活方式的革新,新能 源、航空航天等领域对新材料的性能需求日益严苛,传统机器学习方法的局限性逐渐凸显,尤其是在高熵材料研发领域。 所谓「高熵」材料,是一类由多主元元素混合制备的新型材料。高熵材料通过多主元协同作用显著提升原子排列的构型熵(即无序性),从而赋予其相较 传统材料更优异的力学、耐高温、耐腐蚀等综合性能,在能源存储、航空航天、极端环境装备等领域具有重要的应用潜力。 此前方法如 Crystal graph convolutional neural networks(CGCNN)、Atomistic line graph neural network(ALIGNN) 等人工智能模型均存在架构上的缺 陷:受限于局部信息交 ...
创新算法筛选出54种高性能光伏材料
Ke Ji Ri Bao· 2025-08-03 23:32
Core Insights - The research team at Kunming University of Science and Technology has made significant breakthroughs in the intersection of "Artificial Intelligence + Materials" by proposing a "Continuous Transfer" machine learning framework, addressing the technical bottleneck of multi-performance prediction of materials with small datasets [1][2] - The framework allows for the efficient development of new functional materials, demonstrating the universality of transfer learning in optimizing multiple material properties [2] Group 1: Research Achievements - The team successfully constructed a "Continuous Transfer" learning strategy that first trains a high-precision base model using extensive formation energy data, followed by sequential predictions of key material properties such as stability, bandgap, and bulk modulus [1] - In a shear modulus prediction task with only 51 data points, the team utilized a bulk modulus model as a "stepping stone" for secondary transfer, significantly enhancing prediction reliability in small datasets [1] Group 2: Material Discovery - Using the framework, the research team rapidly screened over 18,000 candidate materials, identifying 54 inorganic double perovskite coating materials with high stability and excellent ductility [2] - Among these, cesium copper hexafluoroiridate exhibited outstanding performance, with a bandgap suitable for photovoltaic applications and a high ductility indicated by the ratio of shear modulus to bulk modulus [2] Group 3: Implications for the Industry - This research not only provides a candidate material library for fields such as perovskite solar cells and photocatalysis but also offers a scalable computational tool to address the challenges of data scarcity in material development [2] - The advancements in material informatics signify a crucial step in solving the "few data, many tasks" dilemma in material research, providing an efficient computational paradigm for multi-performance optimization [2]