材料科学

Search documents
英国材料、矿物与采矿学会会士制度分领域全面解析(附申报流程)
Sou Hu Cai Jing· 2025-10-10 10:58
注:上文内容部分来源网络。由于文章推送未能及时联系原作者,若涉及版权问题,请原作者留言联系我们。 高引学者智库 聚焦全球各个国家的主要科学组织,硬核解读,追踪重大科学突破,挖掘组织背后故事与趣闻。为科学家、科研机构及创新企业提供全链条科技申报与成 果管理服务。感谢您的关注和支持,欢迎评论区留言、分享,相互交流。 学会历史英国材料、矿物与采矿学会 (Institute of Materials, Minerals and Mining,简称 IOM3) 是具有世界性影响力的英国工程类学会,也是英国王室特许 学会。该学会历史可追溯到 1869 年建立并于 1899 年和 1975 年获得英国皇家特许的钢铁学会 (The Iron and Steel Institute)。2002 年 6 月,英国材料学会 (The Institute of Materials) 与英国采矿和冶金学会 (The Institution of Mining and Metallurgy) 合并为英国材料、矿物与采矿学会。IOM3 的宗旨是促进材料科 学与工程、地质学、采矿学以及相关技术的发展,是全球材料和矿业界的权威机构。作为英国王 ...
特殊材料助力脱碳、为量子技术辟新路、发现免疫系统“密码”,诺贝尔自然科学三大奖出炉
Huan Qiu Shi Bao· 2025-10-08 23:13
科学家们此后发现,"金属有机框架"材料不仅制造简单,还能设计成让目标物质自然进入其微孔中,因 此被认为有望以低成本、高效率实现分离与回收。《日本经济新闻》称,如今可以根据需要,设计出不 同类型的"金属有机框架"材料,目前已在保持水果新鲜、半导体制造等领域实现实用化,例如可以用来 吸附水果释放的乙烯气体,从而延缓其成熟速度;有些能从水中分离全氟和多氟烷基物质(PFAS); 或者用于处理剧毒气体。这种材料今后被寄予厚望的是在脱碳领域的应用。如果能利用它从工厂废气或 空气中分离、回收二氧化碳,将大幅减少温室气体排放。 物理学奖 : 为量子技术开辟新路 2025年诺贝尔物理学奖被授予在美国进行科研工作的量子物理学家约翰·克拉克、米歇尔·H·德沃雷特和 约翰·M·马丁尼斯,以表彰他们"在电路中发现宏观量子隧穿效应与能量量子化现象"。 【环球时报特约记者 陈山】编者的话:诺贝尔生理学或医学奖、物理学奖、化学奖被视为全球自然科 学领域影响力最大的科技奖项之一。从10月6日到8日,瑞典方面相继公布了2025年的诺贝尔自然科学三 大奖。获奖科学家作出了怎样开创性的贡献,相关成果又将如何影响世界未来的科技发展? 化学奖 : 特殊 ...
铁磁性和反铁磁性共存 原子级厚度二维材料可大幅降低存储器能耗
Ke Ji Ri Bao· 2025-09-29 23:53
据最新一期《先进材料》杂志报道,瑞典查尔姆斯理工大学研究人员在开发新型层状磁性材料方面取得 突破。他们研发出一种原子级厚度的二维材料,能够使铁磁性和反铁磁性在材料结构中共存,从而将存 储器的能耗降低至原来的约十分之一。这一发现可能为人工智能、移动技术和高级数据处理带来新一代 超高效、可靠存储方案。 随着数字数据量呈指数增长,未来几十年内,数据存储、处理和传输或将占全球能源消耗的近30%。这 一趋势迫使科研人员寻找更加节能的存储技术,同时探索全新的技术可能性。磁性在数字存储技术发展 中已成为关键因素。利用磁性材料中电子在外部磁场和电流作用下的行为,人们可以设计更快、更小且 更节能的存储芯片。 通常存在两种基本磁性状态,即铁磁性和反铁磁性。将这两种相反磁性结合,既具有科学研究价值,也 能为计算机存储和传感器提供技术优势。然而,在此前的存储器材料中,这种共存只能通过堆叠不同铁 磁和反铁磁材料的多层结构实现。 此次研究的突破在于,将铁磁性和反铁磁性整合到单一的二维晶体结构中,实现了电子方向切换的倾斜 磁性。这种设计使电子能够快速、轻松地切换方向,无需外部磁场,从而将存储器能耗降低至约原来的 十分之一。 这种材料由钴、 ...
新材料研发提速,上交大团队开发新AI材料设计模型CGformer,融合全局注意力机制
3 6 Ke· 2025-09-29 07:26
上海交通大学人工智能与微结构实验室李金金教授和黄富强教授团队研发出全新 AI 材料设计模型 CGformer,成功突破传统晶体图神经网络局限。 人工智能正深刻重塑材料科学研发范式,在加速新材料发现与性能优化中展现出突破性价值。通过高通量计算与机器学习的深度融合,传统「试错法」存 在的实验周期长、资源消耗大等痛点被有效破解,材料探索进入到「计算驱动-实验验证」的高效迭代阶段。然而随着人类技术和生活方式的革新,新能 源、航空航天等领域对新材料的性能需求日益严苛,传统机器学习方法的局限性逐渐凸显,尤其是在高熵材料研发领域。 所谓「高熵」材料,是一类由多主元元素混合制备的新型材料。高熵材料通过多主元协同作用显著提升原子排列的构型熵(即无序性),从而赋予其相较 传统材料更优异的力学、耐高温、耐腐蚀等综合性能,在能源存储、航空航天、极端环境装备等领域具有重要的应用潜力。 此前方法如 Crystal graph convolutional neural networks(CGCNN)、Atomistic line graph neural network(ALIGNN) 等人工智能模型均存在架构上的缺 陷:受限于局部信息交 ...
助力科技强国,港澳大有可为
Ren Min Ri Bao Hai Wai Ban· 2025-09-28 22:42
Core Points - The establishment of 19 national key laboratories in Hong Kong and Macau marks a significant milestone in the region's technological innovation development, reflecting the national government's strong support and recognition of the research capabilities and potential of Hong Kong and Macau [1][2] - The laboratories cover various strategic fields such as aerospace, biomedicine, quantum information, materials science, and electronic engineering, showcasing Hong Kong's robust research strength and the achievements of Macau in scientific research and talent cultivation [2] - The integration of Hong Kong and Macau into the national technological innovation system is seen as a mutual benefit, aligning with national strategic needs while enhancing local development opportunities [3] Group 1 - The 19 laboratories include 15 from top global universities in Hong Kong, emphasizing their world-class level in fundamental research and technological innovation [2] - The laboratories aim to align with national technological deployments, opening new avenues for the development of science and technology in Hong Kong and Macau, and providing a broad platform for young talent [1][2] - The unique advantages of Hong Kong and Macau, such as an open academic environment and international research connections, will facilitate collaboration with top global universities and research institutions [2] Group 2 - The current global technological revolution and industrial transformation present an opportunity for Hong Kong and Macau to leverage their strengths in scientific innovation to contribute to national development [3] - The proactive integration into the national technological innovation system is essential for sustaining the momentum and vitality of scientific development in Hong Kong and Macau [3] - The collaboration with mainland China is expected to enhance the quality of contributions from Hong Kong and Macau in the construction of the Guangdong-Hong Kong-Macau Greater Bay Area [3]
新型超材料能通过遥控改变尺寸和形状
Ke Ji Ri Bao· 2025-09-23 23:35
团队通过在材料结构中引入梯形支撑段和加强梁等特定几何特征,将"多稳定性"编程到软结构中,使其 能够以多种稳定状态存在。这些结构形成"能量屏障",使材料在外部驱动力消失后仍能锁定在新的形态 中,持久保持形状。该超材料采用3D打印制造,构建出很多相互连接的微结构单元,每个单元可在"打 开"与"关闭"状态之间快速切换,且切换后无需持续供能即可维持新形态。 通过将多个这样的基本单元像积木一样组合,团队构建出复杂的三维结构,不仅能够整体变形,还能在 外部磁场驱动下产生类似蠕动的运动。尤为关键的是,即使在长期暴露于机械应力和模拟人体胃部的强 酸腐蚀环境后,该材料仍能保持功能完整性。 这种可远程调控形状与尺寸的超材料,有望在医疗领域实现精确定位、靶向药物递送或在体内特定位置 施加可控的机械刺激。目前,团队正与外科医生合作,致力于设计无线流体控制系统,以应对当前临床 中尚未满足的重要医疗需求。 (文章来源:科技日报) 由美国莱斯大学领导的研究团队开发出一种新型超材料,兼具柔软性与高强度,能够通过远程控制快速 改变其尺寸和形状。这一成果有望赋予体内医疗设备全新的能力,标志着可植入和可摄入医疗设备领域 的一项重大突破。相关论文发 ...
全球青年创新者齐聚上海,新一届TR35亚太区名单揭晓
Guo Ji Jin Rong Bao· 2025-09-23 06:20
《麻省理工科技评论》执行主编Amy Nordrum致辞时分享了TR35评选的背景与意义,介绍了TR35评选的严格流程与国际视野,鼓励大家从青年创新者 的奋斗与成就中汲取灵感,共同应对全球挑战。 昌平实验室副主任、上海合成生物学创新中心理事长金勤献在致辞中表示,全球科技创新正深刻改变社会发展,亚太尤其是中国和上海已成为重要引 擎。他强调,青年科学家是创新的核心力量,代表着未来的希望,TR35评选正是为了发现和表彰这些敢于探索、勇于突破的青年领袖。他期待通过这一平 台构建更加紧密的全球创新共同体,共享智慧与成果,共同应对人类面临的挑战。 首场圆桌"全球创新生态"上,嘉宾们围绕差异化发展与国际合作的平衡、基础研究与产业生态的协同、科研文化差异下的互补共存以及绿色技术的跨界 共创等话题,深入讨论不同地域与文化背景下创新模式的根本差异与融合潜力,呼吁在全球化新格局中构建开放共生、协同互鉴的创新生态系统。 9月22日,2025科技青年论坛Meet the TR35 Summit 2025暨《麻省理工科技评论》"35岁以下科技创新35人"(TR35)亚太区发布仪式在上海举行。 个人能够单点解决复杂挑战,唯有协同整合,才能实 ...
晶泰控股(02228):AI+人工智能自主实验平台驱动药物及材料研发,商业化加速
CMS· 2025-09-10 11:36
Investment Rating - The report gives a "Strong Buy" rating for the company [6][7]. Core Insights - The company leverages quantum physics, artificial intelligence, and automation to drive drug and material research, establishing a data-driven technological barrier and gaining recognition from multinational pharmaceutical companies [1][6]. - The company has shown significant revenue growth, with a projected revenue of 2.66 billion RMB in 2024, a 53% year-on-year increase, and a remarkable 404% growth in the first half of 2025 [6][20]. - The company has secured a pipeline cooperation order worth 5.99 billion USD with DoveTree, indicating strong commercial potential [6][20]. Summary by Sections Company Overview - The company was founded in 2015, focusing on drug discovery and material design using quantum physics and AI technologies [11][12]. - It has established long-term strategic partnerships with major pharmaceutical companies, including Pfizer [12][18]. Industry Development - The AI for Science sector is expected to grow significantly, with applications across various high-tech fields, including drug discovery and materials science [25][28]. - The global AI solutions market is projected to grow from 139.5 billion USD in 2022 to 1,414.2 billion USD by 2030, with a CAGR of 33.5% [31][32]. Main Business Analysis - The company’s core business includes AI-driven drug discovery and intelligent automation solutions, with a focus on small molecules and new materials [19][20]. - The revenue from drug discovery solutions is expected to grow significantly, with a 615% increase in the first half of 2025 compared to the previous year [6][20]. Financial Forecast - The company anticipates revenues of 7.86 billion RMB in 2025, 9.75 billion RMB in 2026, and 14.07 billion RMB in 2027, with adjusted net profits gradually improving [6][8].
道氏技术20250903
2025-09-03 14:46
Summary of the Conference Call for Dow's Technology Company and Industry Overview - **Company**: Dow's Technology - **Industry**: AI and Materials Science, specifically focusing on brain-machine interface technology and advanced materials for robotics and sensors [2][3] Core Points and Arguments - **Investment in Long Brain Technology**: Dow's Technology invested $30 million in Long Brain Technology, a leader in non-invasive brain-machine interface technology, founded by Dr. Han Bicheng from Harvard University [4] - **Strategic Goals**: The investment aims to enhance product development efficiency and iteration speed through AI capabilities, aligning with Dow's strategy to become a platform company integrating AI with materials [4] - **Role of New Peison**: New Peison is crucial in Dow's AI strategy, focusing on discovering new materials and enhancing existing ones, particularly in humanoid and special robots, and sensor materials [5] - **AI Chip Development**: New Peison specializes in computing chips, addressing complex AI problems that traditional methods struggle with, and has received recognition from experts in the field [6] - **Artificial Neural Networks**: These networks excel in solving complex problems that cannot be described by equations, such as language models and image recognition, primarily relying on GPU technology [7] Breakthroughs and Innovations - **Advancements in Computing**: New Peison achieved significant breakthroughs in addressing the "curse of dimensionality," improving speed and reducing power consumption in molecular dynamics and density functional theory calculations [8] - **APU Chip Applications**: The APU chip simulates the Schrödinger equation, applicable in various fields of materials science, including military, chemical, lithium battery, photovoltaic, semiconductor, and cosmetics [9][10] - **Future Development Plans**: New Peison plans to expand its technology applications to larger-scale problems, such as weather simulation and vehicle aerodynamics, by developing the EPU chip for high-speed, low-power calculations [11] Additional Important Insights - **Successful Transition**: Dow's Technology transitioned from a focus on ceramic ink materials to the renewable energy sector in 2018, leveraging AI opportunities for larger-scale development [12] - **Collaborative Strategy**: The collaboration with Long Brain Technology and other companies is part of a unified strategy of "AI + materials + applications," aiming for breakthroughs in new material development [5]
专家报告:5G通讯用低介电材料研究开发(附52页PPT)
材料汇· 2025-08-25 13:17
Group 1 - The article discusses the characteristics and requirements of 5G communication technology, emphasizing the need for high-frequency electromagnetic waves to meet the increasing data transmission demands [4][5][6]. - It highlights the Shannon theorem, which relates signal transmission capacity to bandwidth and signal-to-noise ratio, indicating that higher frequencies can enhance data transmission rates [5][6]. - The article outlines the specific material requirements for circuit substrates used in high-frequency communication, including low dielectric constant and low dielectric loss to minimize signal attenuation [7][8][10]. Group 2 - The preparation and performance study of fluorinated thermosetting polyphenylene ether (PPO) is presented, focusing on the effects of physical and chemical modifications on its dielectric properties [11][12][14]. - The article details the synthesis methods for modified PPO, including physical blending and chemical modification, and their impact on the material's thermal and dielectric performance [12][13][14]. - It discusses the dielectric constant and loss of various modified PPO samples, indicating that the introduction of fluorinated groups can enhance dielectric performance [22][38]. Group 3 - The article examines the preparation and performance of hydrocarbon-based thermosetting polyphenylene ether, detailing the structural characterization and curing studies [25][30][31]. - It presents the thermal properties of different hydrocarbon-modified PPOs, noting the influence of curing conditions on their thermal stability and mechanical properties [31][35]. - The dielectric performance of hydrocarbon-modified PPOs is analyzed, showing variations in dielectric constant and loss based on the type of hydrocarbon modification [37][38]. Group 4 - The article explores the application of modified boron nitride/thermosetting polyphenylene ether composites in circuit boards, emphasizing their thermal and dielectric properties [40][58]. - It discusses the impact of filler content on the thermal conductivity and mechanical strength of the composites, indicating that optimal filler levels can enhance performance [54][63]. - The study highlights the microstructural characteristics of the composites, demonstrating effective dispersion of boron nitride within the polymer matrix [61][62].