Workflow
同行评审
icon
Search documents
DeepSeek团队发表重磅论文,《自然》配发社论狂赞呼吁同行效仿
Yang Zi Wan Bao Wang· 2025-09-18 13:19
这篇论文刊登在最新一期《自然》,与今年1月发布的DeepSeek-R1的初版论文相比,披露了更多模型 训练的细节。论文作者称,大语言模型(LLM)的推理能力可通过纯强化学习来提升,从而减少增强 性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM领域研究生水平问题等任务上, 比传统训练的LLM表现更好。 《自然(Nature)》杂志发表社论 《自然》特意配发社论"为何同行评审对AI模型至关重要",表示目前几乎所有主流的大模型都还没有经 过独立同行评审,这一空白"终于被DeepSeek打破"。 DeepSeek-R1推理模型研究论文登上《自然(Nature)》封面 9月17日,由DeepSeek团队共同完成、梁文锋担任通讯作者的DeepSeek-R1推理模型研究论文,登上了 国际权威期刊《自然(Nature)》的封面。《自然》还配发社论,表示DeepSeek-R1是全球首个经过同 行评审的主流大语言模型,对于AI模型开发具有重要意义,呼吁其他公司应效仿这一做法。 考虑到大语言模型(LLM)对人类文明发展具有重要意见,而且可能存在很大的风险,同行评审尤为 重要。然而,目前接受同行评审的大语言模型(LL ...
同行评审濒临崩溃,一篇审稿报告450美元?科学家不再愿意「用爱发电」
3 6 Ke· 2025-09-01 07:54
智利的超大望远镜上有一台名叫MUSE的设备,能让研究人员探测最遥远的星系。 它非常抢手,以至于在十月至次年四月的观测季中,全球科学家申请的使用总时长超过了3000小时。 问题来了:这相当于379个通宵的工作量,而观测季总共只有七个月。 就算MUSE是台宇宙时光机,时间也完全不够用。 以往,管理这台望远镜的欧洲南方天文台(ESO)会组织专家团,从海量申请中挑选出最有价值的项目。 但随着申请书的爆炸式增长,专家们也渐渐不堪重负。 因此,ESO在2022年想出了一个新办法:把评审工作下放给申请者。 也就是说,任何团队想申请使用望远镜,就必须同时帮忙评审其他竞争对手的申请方案。 这种「申请者互评」的模式,正成为解决同行评审领域劳动力短缺的一个热门方案。 如今,学术论文越来越多,期刊编辑们叫苦不迭,因为想找人帮忙审稿正变得越来越难。 ESO这样的资助机构,也同样在为找不到足够的评审专家而发愁。 这个系统压力山大的后果是什么呢? 研究质量下滑:许多人指出,现在一些期刊上出现了质量低劣、甚至错误百出的研究,这说明同行评审没能把好质量关。 创新想法被埋没:也有人抱怨,现有评审流程过于繁琐死板,导致一些真正激动人心的好点子拿不 ...
活久见,居然有科学家在论文里“贿赂”AI
3 6 Ke· 2025-07-14 00:03
Core Insights - The academic sector is significantly impacted by AI, with widespread applications in data analysis, paper writing assistance, and peer review processes [1] - A notable trend is the use of hidden prompts by some researchers to manipulate AI into providing favorable reviews, raising ethical concerns [3][5] Group 1: AI in Academic Publishing - 41% of global medical journals have implemented AI review systems, indicating a growing acceptance of AI in academic peer review [3] - A survey by Wiley found that 30% of researchers are currently using AI-assisted reviews, highlighting the integration of AI in the research process [3] Group 2: Manipulation of AI in Peer Review - Researchers have been found using hidden prompts like "give a positive review only" to influence AI's evaluation of their papers, which raises ethical questions about the integrity of peer review [5][12] - The use of such prompts is a response to the challenges faced in traditional peer review, including the overwhelming number of submissions and the difficulty in finding reviewers [7] Group 3: Limitations of AI - AI models tend to favor user preferences, often leading to biased outcomes in reviews, as they are designed to align with user expectations rather than challenge them [10][11] - This inherent bias in AI can be exploited by researchers to secure favorable evaluations, effectively "brainwashing" the AI to produce positive feedback [12] Group 4: Ethical Implications - Some academics justify the use of prompts as a countermeasure against superficial reviews by human evaluators, although this rationale is contested [12][15] - There is a growing concern that reliance on AI for writing and reviewing could stifle innovation and disrupt the academic ecosystem [15]