神经发育障碍
Search documents
Nature:这种困扰罗永浩的疾病,与三个罕见基因变异有关
生物世界· 2025-12-31 09:00
撰文丨王聪 编辑丨王多鱼 排版丨水成文 2025 年 12 月 31 日, 罗永浩 发布微博,称其患有 ADHD,并讲述了这种疾病对其生活和工作的影响。 近日,丹麦奥胡斯大学的研究人员在国际顶尖学术期刊 Nature 上发表了题为: Rare genetic variants confer a high risk of ADHD and implicate neuronal biology 的研究论文。 这项研究首次识别出三个与 ADHD 风险显著相关的罕见基因变异—— MAP1A 、 ANO8 和 ANK2 。携带 这些基因的罕见有害变异的个体,患 ADHD 的风险比普通人高出 5.55-15.31 倍。 此外,这些 罕见有害 变异还 与 ADHD 患者较低的社会经济地位、较低的受教育程度以及智商更低有关。 这项研究为我们理解 ADHD 这一神经发育障碍的生物学基础打开了全新窗口。 大型研究揭开基因迷雾 注意缺陷多动障碍 ( Attention Deficit Hyperactivity Disorder, ADHD ) 是一 种神经发育障碍,全球约有 5% 的儿童受其影响。但实际上,约有一半的儿童 ADH ...
南京医科大学发表最新Cell Stem Cell论文
生物世界· 2025-12-08 04:21
撰文丨王聪 编辑丨王多鱼 排版丨水成文 迈纳特基底核 ( nucleus basalis of Meynert,nbM) ,作为基底前脑的主要胆碱能输出核团,具有调控皮层功能、学习与记忆等重要作用。 nbM-皮层胆碱能 通路 的功能失调与 神经退行性疾病 (例如 阿尔茨海默病 ) 及 神经发育障碍 (例如 唐氏综合征 ) 密切相关。 2025 年 12 月 4 日, 南京医科大学药学院 刘妍 教授、 南京医科大学 基础医学院 郭兴 教授、 南京医科大学 附属妇产医院 程青 教授及华东师范大学 董毅 教 授作为共同通讯作者 (王达、张馨月、唐晓艳、甘义霞、余汉文为共同第一作者) ,在 Cell Stem Cell 上发表了题为: Generation of human nucleus basalis organoids with functional nbM-cortical cholinergic projections in transplanted assembloids 的研究论文。 该研究构建了 人源基底核类器官 ,并在其移植类器官组装体中形成了具有 功能性的基底核–皮层胆碱能投射,其在研究 nbM ...
跨物种哺乳动物脑细胞发育图谱绘成
Ke Ji Ri Bao· 2025-11-05 22:57
Core Insights - The research presents the first detailed cross-species mammalian brain cell development atlas, providing unprecedented reference for understanding early brain formation and the origins of neurodevelopmental disorders [1][2][3] - Approximately 15% of children and adolescents are affected by neurodevelopmental disorders, highlighting the urgency of understanding critical periods of brain development [1] Group 1: Research Findings - The study, part of the BRAIN Initiative Cell Atlas Network (BICAN), integrates single-cell genomics, spatial transcriptomics, and advanced imaging techniques to construct a comprehensive brain cell atlas across multiple species [1] - A focus on GABAergic inhibitory neurons in the mouse forebrain revealed their migration process from birthplace to functional locations, which is crucial for motor, memory, and emotional regulation [2] - The research tracked over 770,000 single cells in the mouse visual cortex from embryonic to early adult stages, showing that brain cell diversification continues after birth, particularly during the initial visual experiences [2] Group 2: Implications for Future Research - The use of BARseq technology allowed for the mapping of gene expression profiles of millions of neurons, confirming the critical role of sensory experiences in brain region specialization [3] - The findings provide a solid framework for studying the origins of developmental disorders such as autism and schizophrenia, potentially leading to early diagnosis and targeted interventions [3]
Immunity:傅斌清/魏海明团队揭示母亲孕期病毒感染导致后代神经发育障碍的机制
生物世界· 2025-05-18 01:55
Core Viewpoint - The study reveals that maternal immune activation due to viral infection leads to abnormal secretion of extracellular granzyme B (GzmB) by natural killer (NK) cells, which crosses the maternal-fetal barrier, resulting in the accumulation of fetal macrophages and activation of microglia, ultimately causing neurodevelopmental disorders and behavioral defects in offspring [2][3][6]. Group 1: Research Findings - Maternal NK cells activated by viral infection promote the accumulation of activated macrophages in the fetal brain, leading to neurodevelopmental disorders and behavioral defects in offspring [3][6]. - Extracellular granzyme B (GzmB) is released by maternal CD49a+ tissue-resident NK cell subsets under type I interferon stimulation, crossing the maternal-fetal barrier and promoting the accumulation of fetal macrophages expressing interferon-stimulated genes (ISG) and activation of microglia [3][6]. - Targeting extracellular GzmB by systemic administration of serine protease inhibitor Serpina3n or knocking out the GzmB gene in maternal NK cells can alleviate neuroimmune disorders in the fetal brain induced by maternal immune activation [3][6]. Group 2: Implications - The findings indicate that exposure to a disrupted maternal environment reprograms the immune function of decidual NK cells, disrupting the neuroimmune balance in the fetus and increasing the risk of neurodevelopmental disorders in offspring [6].