Mistral 7B

Search documents
三位90后,估值700亿
创业家· 2025-08-11 10:09
以下文章来源于投资界 ,作者余梦莹 王露 投资界 . 清科创业旗下创业与投资资讯平台 这里插播一条课程资讯: AI创业潮。 来源:投资界 作者:余梦莹 王露 AI神话仍在继续。 消息传来,日前Mistral AI正在进行新一轮融资,金额约10亿美元,估值将达到100亿美元 (约合人民币700亿元)。成立两年,估值翻了近50倍,令人咂舌。 身后创始人是三位90后学霸。他们先后从巴黎顶尖学府毕业投身AI大厂,嗅到时代机遇后辞去 高薪职位开始创业。 公司刚刚成立一个月,就凭借7页PPT融资1亿美元 ,刷新欧洲种子轮纪 录。 值得深思的是,今年初DeepSeek全球爆红,成为Mistral梦寐以求的理想模样。悄然间,这一 轮由90后们带队的AI大战才刚刚拉开帷幕。 报名 「吴世春·泸州出行活动」 ,9月21号-23号 , 吴世春将亲自带队 100家企业家 , 去四 川泸州线下游学 , 探 访 下沉创新 , 寻找增长新引擎。 你 在 创业路上遇到的问题和想法 , 都可以找吴老师聊聊 。 如果你是 优质的项目,吴老师 也会果断投 你。 下半年 , 吴老师预计要投出去的金额,应该不小于 15个亿。 扫码咨询报名 (翻到底部 ...
欧洲版DeepSeek,估值700亿
Hu Xiu· 2025-08-10 08:16
本文来自微信公众号:投资界 (ID:pedaily2012),作者:余梦莹、王露,原文标题:《三位90后, 估值700亿》,题图来自:视觉中国(Arthur Mensch) 毕业后,他跨越大洋来到硅谷工作,进入谷歌DeepMind担任研究科学家,负责优化大语言模型。期 间,Mensch与校友Guillaume Lample、Timothée Lacroix重逢,他们已在Meta人工智能实验室任职多年, 是Llama架构的核心奠基人。 AI神话仍在继续。 到了2023年,Mensch意识到,AI正掀起一场席卷全球的革命,法国不应缺席。于是,三位年轻人告别 硅谷,回到巴黎创立Mistral AI——意为"法国吹来的强风"。 消息传来,日前Mistral AI正在进行新一轮融资,金额约10亿美元,估值将达到100亿美元(约合人民币 700亿元)。成立两年,估值翻了近50倍,令人咂舌。 身后创始人是三位90后学霸。他们先后从巴黎顶尖学府毕业投身AI大厂,嗅到时代机遇后辞去高薪职 位开始创业。公司刚刚成立一个月,就凭借7页PPT融资1亿美元,刷新欧洲种子轮纪录。 值得深思的是,今年初DeepSeek全球爆红,成为Mis ...
三位90后,估值700亿
投资界· 2025-08-10 07:45
消息传来,日前Mistr a l AI正在进行新一轮融资,金额约10亿美元,估值将达到100亿美元(约合人民币700亿元)。成立两年,估值 翻了近50倍,令人咂舌。 身后创始人是三位9 0后学霸。他们先后从巴黎顶尖学府毕业投身AI大厂,嗅到时代机遇后辞去高薪职位开始创业。 公司刚刚成立一个 月,就凭借7页PPT融资1亿美元 ,刷新欧洲种子轮纪录。 值得深思的是,今年初De e pSe e k全球爆红,成为Mistr a l梦寐以求的理想模样。悄然间,这一轮由90后们带队的AI大战才刚刚拉开帷 幕。 三位90后联手 创立欧洲版DeepSeek AI创业潮。 AI神话仍在继续。 作者 I 余梦莹 王露 报道 I 投资界PEdaily Mistr a l AI的故事始于三位年轻人。 1992年,Art hur Me ns c h出生于巴黎西郊,是一位名副其实的学霸,先后进入巴黎综合理工学院、巴黎萨克雷大学、巴黎高等师范学 院等顶尖高校深造,26岁就获得机器学习博士学位,后来从事数学专业博士后研究。 到了2023年,Me ns c h意识到,AI正掀起一场席卷全球的革命,法国不应缺席。于是,三位年轻人告别硅谷,回到巴 ...
数据中心维护成本:人工智能盈利能力的潜在风险(以及如何解决)
GEP· 2025-05-29 00:40
Investment Rating - The report does not explicitly provide an investment rating for the AI infrastructure industry Core Insights - The primary threat to profitability in the AI sector is not model performance but rather the escalating infrastructure costs associated with data centers [3][4] - As generative AI usage surges, hyperscalers are experiencing significant increases in operating expenses, necessitating a focus on maintenance to ensure profitability [4][5] - The financial dynamics of AI infrastructure are shifting, with maintenance costs becoming a critical factor for profitability [6][7] Summary by Sections Cost Structure of AI Infrastructure - AI infrastructure incurs three major costs: the cost to build, the cost to serve, and the cost to maintain, with maintenance being the most controllable yet often overlooked [9][12] - The cost to serve AI users is rapidly increasing due to the high volume of queries, leading to tight unit economics [4][9] Inference Economics - Inference represents a recurring operational cost in the generative AI lifecycle, contrasting with the one-time capital investment required for training [8][11] - The profitability equation for hyperscalers is defined as Gross Profit = Revenue – (Operational Cost Per Token × Token Volume) – Maintenance Cost, emphasizing the importance of managing operational costs [12] Maintenance Strategies - Effective maintenance strategies are essential for managing operational costs and ensuring system stability, with a focus on five key domains: hardware infrastructure, environmental systems, network connectivity, software configuration, and AI-specific activities [18][19][20][21] - Techniques such as quantization, distillation, caching, and routing can significantly reduce per-query inference costs without compromising quality [15][16] Outsourcing Maintenance - Many organizations are considering outsourcing AI data center maintenance to specialized third-party providers to enhance efficiency and reduce costs [28][33] - Outsourcing can provide access to specialized talent, better service-level agreements, and advanced diagnostic tools, but it also poses challenges such as data security risks and potential loss of institutional knowledge [32][34] Future Trends - The report anticipates increased integration between third-party maintenance providers and AI operations platforms, as well as the emergence of autonomous maintenance systems powered by AI [54]