Workflow
BEV感知
icon
Search documents
自动驾驶之心项目与论文辅导来了~
自动驾驶之心· 2025-08-07 12:00
Core Viewpoint - The article announces the launch of the "Heart of Autonomous Driving" project and paper guidance, aimed at assisting students facing challenges in their research and development efforts in the field of autonomous driving [1]. Group 1: Project and Guidance Overview - The project aims to provide support for students who encounter difficulties in their research, such as environmental configuration issues and debugging challenges [1]. - Last year's outcomes were positive, with several students successfully publishing papers in top conferences like CVPR and ICRA [1]. Group 2: Guidance Directions - **Direction 1**: Focus on multi-modal perception and computer vision, end-to-end autonomous driving, large models, and BEV perception. The guiding teacher has published over 30 papers in top AI conferences with a citation count exceeding 6000 [3]. - **Direction 2**: Emphasis on 3D Object Detection, Semantic Segmentation, Occupancy Prediction, and multi-task learning based on images or point clouds. The guiding teacher is a top-tier PhD with multiple publications in ECCV and CVPR [5]. - **Direction 3**: Concentration on end-to-end autonomous driving, OCC, BEV, and world model directions. The guiding teacher is also a top-tier PhD with contributions to several mainstream perception solutions [6]. - **Direction 4**: Focus on NeRF / 3D GS neural rendering and 3D reconstruction. The guiding teacher has published four CCF-A class papers, including two in CVPR and two in IEEE Transactions [7].
面试了很多端到端候选人,还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-20 08:36
Core Viewpoint - End-to-End Autonomous Driving is a key algorithm for intelligent driving mass production, with significant salary potential for related positions, and it has evolved into various technical directions since the introduction of UniAD [2][4]. Group 1: Technical Directions - End-to-End Autonomous Driving can be categorized into one-stage and two-stage approaches, with various subfields emerging under each category [2][4]. - The core advantage of end-to-end systems is the direct modeling from sensor input to vehicle planning/control information, avoiding error accumulation seen in modular methods [2]. - Notable algorithms include PLUTO for two-stage end-to-end, UniAD for perception-based one-stage, OccWorld for world model-based one-stage, and DiffusionDrive for diffusion model-based one-stage [4]. Group 2: Industry Trends - The demand for VLA/VLM algorithm experts is increasing, with salary ranges for positions requiring 3-5 years of experience being between 40K-70K [9]. - The industry is witnessing a shift towards large model algorithms, with companies focusing on VLA as the next generation of autonomous driving solutions [8][9]. Group 3: Course Offerings - A new course titled "End-to-End and VLA Autonomous Driving" is being offered to help individuals understand the complexities of end-to-end algorithms and their applications [15][28]. - The course covers various topics, including background knowledge, two-stage end-to-end, one-stage end-to-end, and practical applications of reinforcement learning [20][22][24]. - The course aims to provide a comprehensive understanding of the end-to-end framework, including key technologies like BEV perception, multi-modal large models, and diffusion models [31].
面试了很多端到端候选人,发现还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-13 13:18
Core Viewpoint - End-to-End Autonomous Driving is a key algorithm for intelligent driving mass production, with significant salary potential for related positions, and it has evolved into various technical branches since the introduction of UniAD [2] Group 1: Overview of End-to-End Autonomous Driving - End-to-End Autonomous Driving can be categorized into one-stage and two-stage approaches, with the core advantage being direct modeling from sensor input to vehicle planning/control, avoiding error accumulation seen in modular methods [2] - The emergence of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The academic and industrial focus on End-to-End technology has raised questions about whether UniAD is the ultimate solution, indicating ongoing developments in various algorithms [2] Group 2: Challenges in Learning - The rapid development of End-to-End technology has made previous solutions inadequate, necessitating knowledge in multimodal large models, BEV perception, reinforcement learning, visual transformers, and diffusion models [4] - Beginners often struggle with the fragmented nature of knowledge and the overwhelming number of papers, leading to challenges in extracting frameworks and understanding industry trends [4] Group 3: Course Features - The newly developed course on End-to-End and VLA Autonomous Driving aims to address learning challenges by providing a structured approach to mastering core technologies [5] - The course emphasizes Just-in-Time Learning, helping students quickly grasp key concepts and expand their knowledge in specific areas [5] - It aims to build a framework for research capabilities, enabling students to categorize papers and extract innovative points [6] Group 4: Course Outline - The course includes chapters on the introduction to End-to-End algorithms, background knowledge, two-stage End-to-End methods, one-stage End-to-End methods, and practical applications [11][12][13] - Key topics include the evolution of End-to-End methods, the significance of BEV perception, and the latest advancements in VLA [9][14] Group 5: Target Audience and Expected Outcomes - The course is designed for individuals aiming to enter the autonomous driving industry, providing a comprehensive understanding of End-to-End technologies [19] - Upon completion, participants are expected to achieve a level equivalent to one year of experience as an End-to-End Autonomous Driving algorithm engineer, mastering various methodologies and key technologies [22]
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-10 12:40
Core Viewpoint - End-to-End Autonomous Driving (E2E) is the core algorithm for intelligent driving mass production, marking a new phase in the industry with significant advancements and competition following the recognition of UniAD at CVPR [2] Group 1: E2E Autonomous Driving Overview - E2E can be categorized into single-stage and two-stage approaches, directly modeling from sensor data to vehicle control information, thus avoiding error accumulation seen in modular methods [2] - The emergence of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The rapid development of E2E has led to a surge in demand for VLM/VLA expertise, with potential salaries reaching millions annually [2] Group 2: Learning Challenges - The fast-paced evolution of E2E technology has made previous learning materials outdated, necessitating a comprehensive understanding of multi-modal large models, BEV perception, reinforcement learning, and more [3] - Beginners face challenges in synthesizing knowledge from numerous fragmented papers and transitioning from theory to practice due to a lack of high-quality documentation [3] Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address learning challenges, focusing on Just-in-Time Learning to help students quickly grasp core technologies [4] - The course aims to build a framework for research capabilities, enabling students to categorize papers and extract innovative points [5] - Practical applications are integrated into the course to ensure a complete learning loop from theory to practice [6] Group 4: Course Structure - The course consists of multiple chapters covering the history and evolution of E2E algorithms, background knowledge, two-stage and one-stage E2E methods, and the latest advancements in VLA [8][9][10] - Key topics include the introduction of E2E algorithms, background knowledge on VLA, and practical applications of diffusion models and reinforcement learning [11][12] Group 5: Target Audience and Outcomes - The course is designed for individuals with a foundational understanding of autonomous driving and aims to elevate participants to a level comparable to one year of experience as an E2E algorithm engineer [19] - Participants will gain a deep understanding of key technologies such as BEV perception, multi-modal large models, and reinforcement learning, enabling them to apply learned concepts to real-world projects [19]