神经渲染
Search documents
仿真专场!一文尽览神经渲染(NERF/3DGS)技术在具身仿真框架Isaac Sim中的实现
具身智能之心· 2025-09-28 01:05
Core Viewpoint - Neural Rendering (NERF/3DGS) is revolutionizing 3D reconstruction technology, significantly enhancing the realism of images used in autonomous driving and embodied intelligence simulations, addressing the limitations of traditional computer graphics rendering [3][4]. Group 1: Background and Technology - NERF and 3DGS utilize neural networks to express spatial data, excelling in new perspective synthesis, which is crucial for sensor simulation in autonomous driving and embodied intelligence [3]. - The integration of NERF and 3DGS into existing simulation frameworks is proposed as a more efficient approach than developing new frameworks from scratch, allowing for real-time rendering while leveraging existing 3D digital assets and algorithm interfaces [3][4]. Group 2: Implementation in Simulation Software - NVIDIA's Isaac Sim has incorporated neural rendering technology, enabling the insertion of 3DGS models into simulation environments, allowing for both static backgrounds and dynamic interactive objects [4][5]. - The process of importing 3DGS models into Isaac Sim involves generating USDZ models and ensuring they possess physical properties for interaction within the simulation [5][8]. Group 3: Model Interaction and Physics - To achieve realistic interactions, imported models must have physical attributes added, such as collision properties, to ensure they interact correctly with other objects in the simulation [8][14]. - The integration of dynamic objects, such as a LEGO bulldozer, into the simulation environment demonstrates the capability of 3DGS models to interact with both static and dynamic elements [11][15]. Group 4: Performance and Future Considerations - The performance metrics indicate that even with a high workload, the simulation maintains a good frame rate and low memory usage, showcasing the efficiency of the neural rendering technology [17]. - Future challenges include improving light and shadow interactions between 3DGS models, providing accurate ground truth information for algorithms, and enhancing computational efficiency for larger scenes [18][19].
自动驾驶之心项目与论文辅导来了~
自动驾驶之心· 2025-08-07 12:00
Core Viewpoint - The article announces the launch of the "Heart of Autonomous Driving" project and paper guidance, aimed at assisting students facing challenges in their research and development efforts in the field of autonomous driving [1]. Group 1: Project and Guidance Overview - The project aims to provide support for students who encounter difficulties in their research, such as environmental configuration issues and debugging challenges [1]. - Last year's outcomes were positive, with several students successfully publishing papers in top conferences like CVPR and ICRA [1]. Group 2: Guidance Directions - **Direction 1**: Focus on multi-modal perception and computer vision, end-to-end autonomous driving, large models, and BEV perception. The guiding teacher has published over 30 papers in top AI conferences with a citation count exceeding 6000 [3]. - **Direction 2**: Emphasis on 3D Object Detection, Semantic Segmentation, Occupancy Prediction, and multi-task learning based on images or point clouds. The guiding teacher is a top-tier PhD with multiple publications in ECCV and CVPR [5]. - **Direction 3**: Concentration on end-to-end autonomous driving, OCC, BEV, and world model directions. The guiding teacher is also a top-tier PhD with contributions to several mainstream perception solutions [6]. - **Direction 4**: Focus on NeRF / 3D GS neural rendering and 3D reconstruction. The guiding teacher has published four CCF-A class papers, including two in CVPR and two in IEEE Transactions [7].
4万多名作者挤破头,CVPR 2025官方揭秘三大爆款主题, 你卷对方向了吗?
机器之心· 2025-05-28 03:02
Core Insights - The article discusses the latest trends in the field of computer vision, highlighting three major research directions that are gaining traction as of 2025 [3][4]. Group 1: Major Research Directions - The three prominent areas identified are: 1. Multi-view and sensor 3D technology, which has evolved from 2D rendering to more complex 3D evaluations, significantly influenced by the introduction of NeRF in 2020 [5]. 2. Image and video synthesis, which has become a focal point for presenting environmental information more accurately, reflecting advancements in the ability to analyze and generate multimedia content [6]. 3. Multimodal learning, which integrates visual, linguistic, and reasoning capabilities, indicating a trend towards more interactive and comprehensive AI systems [7][8]. Group 2: Conference Insights - The CVPR 2025 conference has seen a 13% increase in paper submissions, with a total of 13,008 submissions and an acceptance rate of 22.1%, indicating a highly competitive environment [3]. - The conference emphasizes the importance of diverse voices in the research community, ensuring that every paper, regardless of the author's affiliation, is given equal consideration [8].