扩散模型

Search documents
扩散模如何重塑自动驾驶轨迹规划?
自动驾驶之心· 2025-09-11 23:33
Core Viewpoint - The article discusses the significance and application of Diffusion Models in various fields, particularly in autonomous driving, emphasizing their ability to denoise and generate data effectively [1][2][11]. Summary by Sections Introduction to Diffusion Models - Diffusion Models are generative models that focus on denoising, learning the distribution of data through a forward diffusion process and a reverse generation process [2][4]. - The concept is illustrated through the analogy of ink dispersing in water, where the model aims to recover the original data from noise [2]. Applications in Autonomous Driving - In the field of autonomous driving, Diffusion Models are utilized for data generation, scene prediction, perception enhancement, and path planning [11]. - They can handle both continuous and discrete noise, making them versatile for various decision-making tasks [11]. Course Offering - The article promotes a new course on end-to-end and VLA (Vision-Language Alignment) algorithms in autonomous driving, developed in collaboration with top industry experts [14][17]. - The course aims to address the challenges faced by learners in keeping up with rapid technological advancements and fragmented knowledge in the field [15][18]. Course Structure - The course is structured into several chapters, covering topics such as the history of end-to-end algorithms, background knowledge on VLA, and detailed discussions on various methodologies including one-stage and two-stage end-to-end approaches [22][23][24]. - Special emphasis is placed on the integration of Diffusion Models in multi-modal trajectory prediction, highlighting their growing importance in the industry [28]. Learning Outcomes - Participants are expected to achieve a level of understanding equivalent to one year of experience as an end-to-end autonomous driving algorithm engineer, mastering key frameworks and technologies [38][39]. - The course includes practical components to ensure a comprehensive learning experience, bridging theory and application [19][36].
谈谈Diffusion扩散模型 -- 从图像生成到端到端轨迹规划~
自动驾驶之心· 2025-09-06 11:59
Core Viewpoint - The article discusses the significance and application of Diffusion Models in various fields, particularly in autonomous driving, emphasizing their ability to denoise and generate data effectively [1][2][11]. Summary by Sections Introduction to Diffusion Models - Diffusion Models are generative models that focus on denoising, where noise follows a specific distribution. The model learns to recover original data from noise through a forward diffusion process and a reverse generation process [1][2]. Applications in Autonomous Driving - In the field of autonomous driving, Diffusion Models are utilized for data generation, scene prediction, perception enhancement, and path planning. They can handle both continuous and discrete noise, making them versatile for various decision-making tasks [11]. Course Overview - The article promotes a new course titled "End-to-End and VLA Autonomous Driving," developed in collaboration with top algorithm experts. The course aims to provide in-depth knowledge of end-to-end algorithms and VLA technology [15][22]. Course Structure - The course is structured into several chapters, covering topics such as: - Comprehensive understanding of end-to-end autonomous driving [18] - In-depth background knowledge including large language models, BEV perception, and Diffusion Model theory [21][28] - Exploration of two-stage and one-stage end-to-end methods, including the latest advancements in the field [29][36] Learning Outcomes - Participants are expected to gain a solid understanding of the end-to-end technology framework, including one-stage, two-stage, world models, and Diffusion Models. The course also aims to enhance knowledge of key technologies like BEV perception and reinforcement learning [41][43].
业务合伙人招募来啦!模型部署/VLA/端到端方向~
自动驾驶之心· 2025-09-02 03:14
Group 1 - The article announces the recruitment of 10 partners for the autonomous driving sector, focusing on course development, research guidance, and hardware development [2][5] - The recruitment targets individuals with expertise in various advanced models and technologies related to autonomous driving, such as large models, multimodal models, and 3D target detection [3] - Candidates are preferred from QS top 200 universities with a master's degree or higher, especially those with significant conference contributions [4] Group 2 - The company offers benefits including resource sharing for job seeking, PhD recommendations, and study abroad opportunities, along with substantial cash incentives [5] - There are opportunities for collaboration on entrepreneurial projects [5] - Interested parties are encouraged to contact the company via WeChat for further inquiries [6]
上岸自动驾驶感知!轨迹预测1v6小班课仅剩最后一个名额~
自动驾驶之心· 2025-08-30 16:03
Group 1 - The core viewpoint of the article emphasizes the importance of trajectory prediction in autonomous driving and related fields, highlighting that end-to-end methods are not yet widely adopted, and trajectory prediction remains a key area of research [1][3]. - The article discusses the integration of diffusion models into trajectory prediction, which significantly enhances multi-modal modeling capabilities, with specific models like Leapfrog Diffusion Model (LED) achieving real-time predictions and improving accuracy by 19-30 times on various datasets [2][3]. - The course aims to provide a systematic understanding of trajectory prediction, combining theoretical knowledge with practical coding skills, and assisting students in developing their own models and writing research papers [6][8]. Group 2 - The target audience for the course includes graduate students and professionals in trajectory prediction and autonomous driving, who seek to enhance their research capabilities and understand cutting-edge developments in the field [8][10]. - The course offers a comprehensive curriculum that includes classic and cutting-edge papers, baseline codes, and methodologies for selecting research topics, conducting experiments, and writing papers [20][30]. - The course structure includes 12 weeks of online group research followed by 2 weeks of paper guidance, ensuring participants gain practical experience and produce a research paper draft by the end of the program [31][35].
自动驾驶之心业务合伙人招募来啦!模型部署/VLA/端到端方向~
自动驾驶之心· 2025-08-28 08:17
Core Viewpoint - The article emphasizes the recruitment of business partners for the autonomous driving sector, highlighting the need for expertise in various advanced technologies and offering attractive incentives for potential candidates [2][3][5]. Group 1: Recruitment Details - The company plans to recruit 10 outstanding partners for autonomous driving-related course development, research paper guidance, and hardware development [2]. - Candidates with expertise in large models, multimodal models, diffusion models, and other advanced technologies are particularly welcome [3]. - Preferred qualifications include a master's degree or higher from universities ranked within the QS200, with priority given to candidates with significant conference contributions [4]. Group 2: Incentives and Opportunities - The company offers resource sharing related to autonomous driving, including job recommendations, PhD opportunities, and study abroad guidance [5]. - Attractive cash incentives are part of the compensation package for successful candidates [5]. - Opportunities for collaboration on entrepreneurial projects are also available [5].
EgoTwin :世界模型首次实现具身「视频+动作」同框生成,时间与空间上精确对齐
具身智能之心· 2025-08-28 01:20
Core Viewpoint - The article discusses the EgoTwin framework, which allows for the simultaneous generation of first-person perspective videos and human actions, achieving precise alignment in both time and space, thus attracting significant attention in the AR/VR, embodied intelligence, and wearable device sectors [2][5]. Summary by Sections Introduction - The EgoTwin framework was developed collaboratively by institutions including the National University of Singapore, Nanyang Technological University, Hong Kong University of Science and Technology, and Shanghai Artificial Intelligence Laboratory [2]. Key Highlights - EgoTwin combines first-person perspective video generation with human action generation, addressing challenges such as camera trajectory alignment with head movement and establishing a causal loop between observation and action [8]. - It utilizes a large dataset of 170,000 segments of first-person multimodal real-world scenes for training, leading to significant performance improvements, including a 48% reduction in trajectory error and a 125% increase in hand visibility F-score [8]. Method Innovations - EgoTwin introduces three core technologies: 1. A head-centric action representation that directly provides head 6D pose, reducing alignment errors [12]. 2. A bidirectional causal attention mechanism that allows for causal interactions between action tokens and video tokens [12]. 3. An asynchronous diffusion mechanism that ensures synchronization while allowing independent noise addition and removal on different timelines [12]. Technical Implementation - The model employs a three-channel diffusion architecture, optimizing computational efficiency by reusing only the necessary layers for the action branch [13]. - The training process involves three phases, including initial training of the action VAE, followed by alignment training, and finally joint fine-tuning of all three modalities [21]. Data and Evaluation - EgoTwin is trained and tested on the Nymeria dataset, which includes 170,000 five-second video clips covering various daily actions [17]. - A comprehensive evaluation system is established to measure generation quality and consistency across the three modalities, utilizing metrics such as I-FID, FVD, and CLIP-SIM [17]. Quantitative Experiments - EgoTwin outperforms baseline methods across all nine evaluation metrics, demonstrating significant improvements in trajectory alignment and hand score, while also enhancing the fidelity and consistency of generated videos and actions [18][19]. Generation Modes - The framework supports three generation modes: T2VM (text to video and motion), TM2V (text and motion to video), and TV2M (text and video to motion), showcasing its versatility [24].
中信证券:短期建议关注具身模型行业的资本布局者及数据采集卖铲人
Di Yi Cai Jing· 2025-08-25 00:58
Core Insights - The correct model architecture and efficient data sampling are identified as the two main challenges for the scalable development of embodied intelligence, which has become a primary focus for companies in this sector [1] - The main theme of model architecture revolves around the integration of large language models, large visual models, and action models, with diffusion model-based flow matching algorithms gaining prominence in the short term [1] - Companies with strong capital expenditure capabilities are leveraging real data collection as a breakthrough to build competitive barriers through data set accumulation, while synthetic data and internet data are also essential for the value foundation of embodied models [1] - The organic combination of pre-training and post-training core demands with data attributes has emerged as a new challenge, leading to the rise of data sampling concepts [1] - The role of world models in empowering the scalability of synthetic data and strategy evaluation is also significant [1] - In the short term, attention is recommended on capital investors in the embodied model industry and data collection providers, while in the long term, cloud computing and computing power providers should be monitored [1]
从零开始!自动驾驶端到端与VLA学习路线图~
自动驾驶之心· 2025-08-24 23:32
Core Viewpoint - The article emphasizes the importance of understanding end-to-end (E2E) algorithms and Visual Language Models (VLA) in the context of autonomous driving, highlighting the rapid development and complexity of the technology stack involved [2][32]. Summary by Sections Introduction to End-to-End and VLA - The article discusses the evolution of large language models over the past five years, indicating a significant technological advancement in the field [2]. Technical Foundations - The Transformer architecture is introduced as a fundamental component for understanding large models, with a focus on attention mechanisms and multi-head attention [8][12]. - Tokenization methods such as BPE (Byte Pair Encoding) and positional encoding are explained as essential for processing sequences in models [13][9]. Course Overview - A new course titled "End-to-End and VLA Autonomous Driving" is launched, aimed at providing a comprehensive understanding of the technology stack and practical applications in autonomous driving [21][33]. - The course is structured into five chapters, covering topics from basic E2E algorithms to advanced VLA methods, including practical assignments [36][48]. Key Learning Objectives - The course aims to equip participants with the ability to classify research papers, extract innovative points, and develop their own research frameworks [34]. - Emphasis is placed on the integration of theory and practice, ensuring that learners can apply their knowledge effectively [35]. Industry Demand and Career Opportunities - The demand for VLA/VLM algorithm experts is highlighted, with salary ranges between 40K to 70K for positions requiring 3-5 years of experience [29]. - The course is positioned as a pathway for individuals looking to transition into roles focused on autonomous driving algorithms, particularly in the context of emerging technologies [28].
DiT突遭怒喷,谢赛宁淡定回应
量子位· 2025-08-20 07:48
Core Viewpoint - The article discusses the recent criticisms of the DiT (Diffusion Transformers) model, which is considered a cornerstone in the diffusion model field, highlighting the importance of scientific scrutiny and empirical validation in research [3][10]. Group 1: Criticism of DiT - A user has raised multiple concerns about DiT, claiming it is flawed both mathematically and in its structure, even questioning the presence of Transformer elements in DiT [4][12]. - The criticisms are based on a paper titled "TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training," which introduces a strategy that allows early-layer tokens to be passed to deeper layers without modifying the architecture or adding parameters [12][14]. - The critic argues that the rapid decrease in FID (Fréchet Inception Distance) during training indicates that DiT's architecture has inherent properties that allow it to easily learn the dataset [15]. - The Tread model reportedly trains 14 times faster than DiT after 400,000 iterations and 37 times faster at its best performance after 7 million iterations, suggesting that significant performance improvements may undermine previous methods [16][17]. - The critic also suggests that if parts of the network are disabled during training, it could render the network ineffective [19]. - It is noted that the more network units in DiT that are replaced with identity mappings during training, the better the model evaluation results [20]. - The architecture of DiT is said to require logarithmic scaling to represent the signal-to-noise ratio differences during the diffusion process, indicating potential issues with output dynamics [23]. - Concerns are raised regarding the Adaptive Layer Normalization method, suggesting that DiT processes conditional inputs through a standard MLP (Multi-Layer Perceptron) without clear Transformer characteristics [25][26]. Group 2: Response from Xie Saining - Xie Saining, the author of DiT, responded to the criticisms, asserting that the Tread model's findings do not invalidate DiT [27]. - He acknowledges the Tread model's contributions but emphasizes that its effectiveness is due to regularization enhancing feature robustness, not because DiT is incorrect [28]. - Saining highlights that Lightning DiT, an upgraded version of DiT, remains a powerful option and should be prioritized when conditions allow [29]. - He also states that there is no evidence to suggest that the post-layer normalization in DiT causes issues [30]. - Saining summarizes improvements made over the past year, focusing on internal representation learning and various methods for enhancing model training [32]. - He mentions that the sd-vae (stochastic depth variational autoencoder) is a significant concern for DiT, particularly regarding its high computational cost for processing images at 256×256 resolution [34].
DiT在数学和形式上是错的?谢赛宁回应:不要在脑子里做科学
机器之心· 2025-08-20 04:26
Core Viewpoint - The article discusses criticisms of the DiT model, highlighting potential architectural flaws and the introduction of a new method called TREAD that significantly improves training efficiency and image generation quality compared to DiT [1][4][6]. Group 1 - A recent post on X claims that DiT has architectural defects, sparking significant discussion [1]. - The TREAD method achieves a training speed improvement of 14/37 times on the FID metric when applied to the DiT backbone network, indicating better generation quality [2][6]. - The post argues that DiT's FID stabilizes too early during training, suggesting it may have "latent architectural defects" that prevent further learning from data [4]. Group 2 - TREAD employs a "token routing" mechanism to enhance training efficiency without altering the model architecture, using a partial token set to save information and reduce computational costs [6]. - The author of the original DiT paper, Sseining, acknowledges the criticisms and emphasizes the importance of experimental validation over theoretical assertions [28][33]. - Sseining also points out that DiT's architecture has some inherent flaws, particularly in its use of post-layer normalization, which is known to be unstable for tasks with significant numerical range variations [13][36]. Group 3 - The article mentions that DiT's design relies on a simple MLP network for processing critical conditional data, which limits its expressive power [16]. - Sseining highlights that the real issue with DiT lies in its sd-vae component, which is inefficient and has been overlooked for a long time [36]. - The ongoing debate around DiT reflects the iterative nature of algorithmic progress, where existing models are continuously questioned and improved [38].