Workflow
生成对抗网络
icon
Search documents
VLA的Action到底是个啥?谈谈Diffusion:从图像生成到端到端轨迹规划~
自动驾驶之心· 2025-07-19 10:19
Core Viewpoint - The article discusses the principles and applications of diffusion models in the context of autonomous driving, highlighting their advantages over generative adversarial networks (GANs) and detailing specific use cases in the industry. Group 1: Diffusion Model Principles - Diffusion models are generative models that focus on denoising, learning and simulating data distributions through a forward diffusion process and a reverse generation process [2][4]. - The forward diffusion process adds noise to the initial data distribution, while the reverse generation process aims to remove noise to recover the original data [5][6]. - The models typically utilize a Markov chain to describe the state transitions during the noise addition and removal processes [8]. Group 2: Comparison with Generative Adversarial Networks - Both diffusion models and GANs involve noise addition and removal processes, but they differ in their core mechanisms: diffusion models rely on probabilistic modeling, while GANs use adversarial training between a generator and a discriminator [20][27]. - Diffusion models are generally more stable during training and produce higher quality samples, especially at high resolutions, compared to GANs, which can suffer from mode collapse and require training multiple networks [27][28]. Group 3: Applications in Autonomous Driving - Diffusion models are applied in various areas of autonomous driving, including synthetic data generation, scene prediction, perception enhancement, and path planning [29]. - They can generate realistic driving scene data to address the challenges of data scarcity and high annotation costs, particularly for rare scenarios like extreme weather [30][31]. - In scene prediction, diffusion models can forecast dynamic changes in driving environments and generate potential behaviors of traffic participants [33]. - For perception tasks, diffusion models enhance data quality by denoising bird's-eye view (BEV) images and improving sensor data consistency [34][35]. - In path planning, diffusion models support multimodal path generation, enhancing safety and adaptability in complex driving conditions [36]. Group 4: Notable Industry Implementations - Companies like Haomo Technology and Horizon Robotics are developing advanced algorithms based on diffusion models for real-world applications, achieving state-of-the-art performance in various driving scenarios [47][48]. - The integration of diffusion models with large language models (LLMs) and other technologies is expected to drive further innovations in the autonomous driving sector [46].
TransDiffuser: 理想VLA diffusion出轨迹的架构
理想TOP2· 2025-05-18 13:08
Core Viewpoint - The article discusses the advancements in the field of autonomous driving, particularly focusing on the Diffusion model and its application in generating driving trajectories, highlighting the differences between VLM and VLA systems [1][4]. Group 1: Diffusion Model Explanation - Diffusion is a generative model that learns data distribution through a process of adding noise (Forward Process) and removing noise (Reverse Process), akin to a reverse puzzle [4]. - The model's denoising process involves training a neural network to predict and remove noise, ultimately generating target data [4]. - Diffusion not only generates the vehicle's trajectory but also predicts the trajectories of other vehicles and pedestrians, enhancing decision-making in complex traffic environments [5]. Group 2: VLM and VLA Systems - VLM consists of two systems: System 1 mimics learning to output trajectories without semantic understanding, while System 2 has semantic understanding but only provides suggestions [2]. - VLA is a single system with both fast and slow thinking capabilities, inherently possessing semantic reasoning [2]. - The output of VLA is action tokens that encode the vehicle's driving behavior and surrounding environment, which are then decoded into driving trajectories using the Diffusion model [4][5]. Group 3: TransDiffuser Architecture - TransDiffuser is an end-to-end trajectory generation model that integrates multi-modal perception information to produce high-quality, diverse trajectories [6][7]. - The architecture includes a Scene Encoder for processing multi-modal data and a Denoising Decoder that utilizes the DDPM framework for trajectory generation [7][9]. - The model employs a multi-head cross-attention mechanism to fuse scene and motion features during the denoising process [9]. Group 4: Performance and Innovations - The model achieves a Predictive Driver Model Score (PDMS) of 94.85, outperforming existing methods [11]. - Key innovations include anchor-free trajectory generation and a multi-modal representation decorrelation optimization mechanism to enhance trajectory diversity and reduce redundancy [11][12]. Group 5: Limitations and Future Directions - The authors note challenges in fine-tuning the model, particularly the perception encoder [13]. - Future directions involve integrating reinforcement learning and referencing models like OpenVLA for further advancements [13].
北京国电通申请基于生成对抗网络与大语言模型的人力资源管理专利,实现生成虚拟人力资源数据的多元化
Jin Rong Jie· 2025-05-14 03:56
Group 1 - Beijing Guodian Tong Network Technology Co., Ltd. applied for a patent titled "A Human Resource Management Method Based on Generative Adversarial Networks and Large Language Models" [1] - The patent aims to utilize generative adversarial networks to learn existing human resource management data and generate diverse virtual human resource management data [1] - The method involves training a human resource management model using both real and virtual data to optimize human resource decision-making [1] Group 2 - Beijing Guodian Tong Network Technology Co., Ltd. was established in 2000 with a registered capital of 73 million RMB and has invested in 4 companies [2] - State Grid Information Communication Industry Group Co., Ltd. was founded in 2015 with a registered capital of approximately 1.5 billion RMB and has invested in 40 companies [2] - The two companies have significant involvement in various projects, with Guodian Tong participating in 2019 bidding projects and State Grid participating in 5000 bidding projects [2]
一文讲透AI历史上的10个关键时刻!
机器人圈· 2025-05-06 12:30
Core Viewpoint - By 2025, artificial intelligence (AI) has transitioned from a buzzword in tech circles to an integral part of daily life, impacting various industries through applications like image generation, coding, autonomous driving, and medical diagnosis. The evolution of AI is marked by significant breakthroughs and challenges, tracing back to the Dartmouth Conference in 1956, leading to the current technological wave driven by large models [1]. Group 1: Historical Milestones - The Dartmouth Conference in 1956 is recognized as the birth of AI, where pioneers gathered to explore machine intelligence, laying the foundation for AI as a formal discipline [2][3]. - In 1957, Frank Rosenblatt developed the Perceptron, an early artificial neural network that introduced the concept of optimizing models using training data, which became central to machine learning and deep learning [4][6]. - ELIZA, created in 1966 by Joseph Weizenbaum, was the first widely recognized chatbot, demonstrating the potential of AI in natural language processing by simulating human-like conversation [7][8]. - The rise of expert systems in the 1970s, such as Dendral and MYCIN, showcased AI's ability to perform specialized tasks in fields like chemistry and medical diagnosis, establishing its application in professional domains [9][11]. - IBM's Deep Blue defeated world chess champion Garry Kasparov in 1997, marking a significant milestone in AI's capability to outperform humans in strategic decision-making [12][14]. - The 1990s to 2000s saw a shift towards data-driven algorithms in AI, emphasizing the importance of machine learning [15]. - The emergence of deep learning in 2012, particularly through the work of Geoffrey Hinton, revolutionized AI by utilizing multi-layer neural networks and backpropagation techniques, leading to significant advancements in model training [17][18]. - The introduction of Generative Adversarial Networks (GANs) in 2014 by Ian Goodfellow transformed the field of generative models, enabling the creation of realistic synthetic data [20]. - AlphaGo's victory over Lee Sedol in 2016 highlighted AI's potential in complex games requiring intuition and strategic thinking, further pushing the boundaries of AI capabilities [22]. - The development of large language models began with the introduction of the Transformer architecture in 2017, leading to models like GPT-3, which demonstrated emergent abilities and set the stage for the current AI landscape [24][26].