Workflow
扩散模型
icon
Search documents
我们正在寻找自动驾驶领域的合伙人...
自动驾驶之心· 2025-10-17 16:04
Group 1 - The article announces the recruitment of 10 outstanding partners for the autonomous driving sector, focusing on course development, paper guidance, and hardware research [2] - The main areas of expertise sought include large models, multimodal models, diffusion models, end-to-end systems, embodied interaction, joint prediction, SLAM, 3D object detection, world models, closed-loop simulation, and model deployment and quantization [3] - Candidates are preferred to have a master's degree or higher from universities ranked within the QS200, with priority given to those who have published in top conferences [4] Group 2 - The compensation package includes shared resources in autonomous driving (job placement, PhD recommendations, study abroad opportunities), substantial cash incentives, and collaboration on entrepreneurial projects [5] - Interested parties are encouraged to contact via WeChat for consultation regarding institutional or company collaboration in autonomous driving [6]
执行力是当下自动驾驶的第一生命力
自动驾驶之心· 2025-10-17 16:04
Core Viewpoint - The article discusses the evolving landscape of the autonomous driving industry in China, highlighting the shift in competitive dynamics and the increasing investment in autonomous driving technologies as a core focus of AI development [1][2]. Industry Trends - The autonomous driving sector has undergone significant changes over the past two years, with new players entering the market and existing companies focusing on improving execution capabilities [1]. - The industry experienced a flourishing period before 2022, where companies with standout technologies could thrive, but has since transitioned into a more competitive environment that emphasizes addressing weaknesses [1]. - Companies that remain active in the market are progressively enhancing their hardware, software, AI capabilities, and engineering implementation to survive and excel [1]. Future Outlook - By 2025, the industry is expected to enter a "calm period," where unresolved technical challenges in areas like L3, L4, and Robotaxi will continue to present opportunities for professionals in the field [2]. - The article emphasizes the importance of comprehensive skill sets for individuals in the autonomous driving sector, suggesting that those with a short-term profit mindset may not endure in the long run [2]. Community and Learning Resources - The "Autonomous Driving Heart Knowledge Planet" community has been established to provide a comprehensive platform for learning and sharing knowledge in the autonomous driving field, featuring over 4,000 members and aiming for a growth to nearly 10,000 in the next two years [4][17]. - The community offers a variety of resources, including video content, learning pathways, Q&A sessions, and job exchange opportunities, catering to both beginners and advanced learners [4][6][18]. - Members can access detailed technical routes and practical solutions for various autonomous driving challenges, significantly reducing the time needed for research and learning [6][18]. Technical Focus Areas - The community has compiled over 40 technical routes related to autonomous driving, covering areas such as end-to-end learning, multi-modal models, and various simulation platforms [18][39]. - There is a strong emphasis on practical applications, with resources available for data processing, 4D labeling, and engineering practices in autonomous driving [12][18]. Job Opportunities - The community facilitates job opportunities by connecting members with openings in leading autonomous driving companies, providing a platform for resume submissions and internal referrals [13][22].
工业界和学术界都在怎么搞端到端和VLA?
自动驾驶之心· 2025-10-17 00:03
Core Insights - The article discusses the evolution of end-to-end algorithms in autonomous driving, highlighting the transition from modular production algorithms to end-to-end and now to Vision-Language Alignment (VLA) models [1][3] - It emphasizes the rich technology stack involved in end-to-end algorithms, including BEV perception, visual language models (VLM), diffusion models, reinforcement learning, and world models [3] Summary by Sections End-to-End Algorithms - End-to-end algorithms are categorized into two main paradigms: single-stage and two-stage, with UniAD being a representative of the single-stage approach [1] - Single-stage can further branch into various subfields, particularly those based on VLA, which have seen a surge in related publications and industrial applications in recent years [1] Courses Offered - The article promotes two courses: "End-to-End and VLA Autonomous Driving Small Class" and "Practical Course on Autonomous Driving VLA and Large Models," aimed at helping individuals quickly and efficiently enter the field [3] - The "Practical Course" focuses on VLA, covering topics from VLM as an autonomous driving interpreter to modular and integrated VLA, along with detailed theoretical foundations [3][12] Instructor Team - The instructor team includes experts from both academia and industry, with backgrounds in multi-modal perception, autonomous driving VLA, and large model frameworks [8][11][14] - Notable instructors have published numerous papers in top-tier conferences and have extensive experience in research and practical applications in autonomous driving and large models [8][11][14] Target Audience - The courses are designed for individuals with a foundational understanding of autonomous driving, familiar with basic modules, and have knowledge of transformer models, reinforcement learning, and BEV perception [15][17]
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
机器之心· 2025-10-14 08:24
Core Insights - The article discusses the emergence of RAE (Representation Autoencoders) as a potential replacement for VAE (Variational Autoencoders) in the field of generative models, highlighting the advancements made by the research team led by Assistant Professor Xie Saining from New York University [1][2]. Group 1: RAE Development - RAE combines pre-trained representation encoders (like DINO, SigLIP, MAE) with trained decoders to replace traditional VAE, achieving high-quality reconstruction and a semantically rich latent space [2][6]. - The new model structure addresses the limitations of VAE, such as weak representation capabilities and high computational costs associated with SD-VAE [4][13]. Group 2: Performance Metrics - RAE demonstrates superior performance in image generation tasks, achieving an FID score of 1.51 at a resolution of 256×256 without guidance, and 1.13 with guidance at both 256×256 and 512×512 resolutions [5][6]. - The study shows that RAE consistently outperforms SD-VAE in reconstruction quality, with rFID scores indicating better performance across various encoder configurations [18][20]. Group 3: Training and Architecture - The research introduces a new variant of DiT (Diffusion Transformer), named DiT^DH, which incorporates a lightweight, wide head structure to enhance the model's efficiency without significantly increasing computational costs [3][34]. - The training scheme for the RAE decoder involves using a frozen representation encoder and a ViT-based decoder, achieving reconstruction quality comparable to or better than SD-VAE [12][14]. Group 4: Scalability and Efficiency - DiT^DH exhibits improved convergence speed and computational efficiency compared to standard DiT, maintaining performance advantages across different scales of RAE [36][40]. - The model's scalability is highlighted, with DiT^DH-XL achieving a new state-of-the-art FID score of 1.13 after 400 epochs, outperforming previous models while requiring significantly less computational power [41][43]. Group 5: Noise Management Techniques - The research proposes noise-enhanced decoding to improve the robustness of the decoder against out-of-distribution challenges, which enhances the model's overall performance [29][30]. - Adjustments to noise scheduling based on the effective data dimensions of RAE are shown to significantly improve training outcomes, demonstrating the necessity of tailored noise strategies in high-dimensional latent spaces [28].
Bug变奖励:AI的小失误,揭开创造力真相
3 6 Ke· 2025-10-13 00:31
Core Insights - The article discusses the surprising creativity of AI models, particularly diffusion models, which seemingly generate novel images rather than mere copies, suggesting that their creativity is a byproduct of their architectural design [1][2][6]. Group 1: AI Creativity Mechanism - Diffusion models are designed to reconstruct images from noise, yet they produce unique compositions by combining different elements, leading to unexpected and meaningful outputs [2][4]. - The phenomenon of AI generating images with oddities, such as extra fingers, is attributed to the models' inherent limitations, which force them to improvise rather than rely solely on memory [12][19]. - The research identifies two key principles in diffusion models: locality, where the model focuses on small pixel blocks, and equivariance, which ensures that shifts in input images result in corresponding shifts in output [8][9]. Group 2: Mathematical Validation - Researchers developed the ELS (Equivariant Local Score) machine, a mathematical system that predicts how images will combine as noise is removed, achieving a remarkable 90% overlap with outputs from real diffusion models [13][18]. - This finding suggests that AI creativity is not a mysterious phenomenon but rather a predictable outcome of the operational rules of the models [18]. Group 3: Biological Parallels - The study draws parallels between AI creativity and biological processes, particularly in embryonic development, where local responses lead to self-organization, sometimes resulting in anomalies like extra fingers [19][21]. - It posits that human creativity may not be fundamentally different from AI creativity, as both stem from a limited understanding of the world and the ability to piece together experiences into new forms [21][22].
北航团队提出新的离线分层扩散框架:基于结构信息原理,实现稳定离线策略学习|NeurIPS 2025
AI前线· 2025-10-09 04:48
Core Insights - The article discusses the potential of a new framework called SIHD (Structural Information-based Hierarchical Diffusion) for offline reinforcement learning, which adapts to various tasks by analyzing embedded structural information in offline trajectories [2][3][23]. Research Background and Motivation - Offline reinforcement learning aims to train effective policies using fixed historical datasets without new interactions with the environment. The introduction of diffusion models helps mitigate extrapolation errors caused by out-of-distribution states and actions [3][4]. - Current methods face limitations due to fixed hierarchical structures and single time scales, which hinder adaptability to different task complexities and decision-making flexibility [5][6]. SIHD Framework Core Design - SIHD innovates in three areas: hierarchical construction, conditional diffusion, and regularization exploration [5]. - The framework's hierarchical construction is adaptive, allowing the data's inherent structure to dictate the hierarchy [7][9]. - The conditional diffusion model uses structural information gain as a guiding signal, enhancing stability and robustness compared to traditional methods reliant on sparse reward signals [10][11]. - A structural entropy regularizer is introduced to encourage exploration and mitigate extrapolation errors, balancing exploration and exploitation in the training objective [12][13]. Experimental Results and Analysis - SIHD was evaluated on the D4RL benchmark, demonstrating superior performance in standard offline RL tasks and long-horizon navigation tasks [14][15]. - In Gym-MuJoCo tasks, SIHD achieved optimal average returns across various data quality levels, outperforming advanced hierarchical baselines with average improvements of 3.8% and 3.9% in medium-quality datasets [16][17][18]. - In long-horizon navigation tasks, SIHD showed significant advantages, particularly in sparse reward scenarios, with notable performance improvements in Maze2D and AntMaze tasks [19][20][22]. - Ablation studies confirmed the necessity of SIHD's components, especially the adaptive multi-scale hierarchy, which is crucial for performance in long-horizon tasks [21][22]. Conclusion - The SIHD framework successfully constructs an adaptive multi-scale hierarchical diffusion model, overcoming rigid limitations of existing methods and significantly enhancing offline policy learning performance, generalization, and robustness [23]. Future research may explore more refined sub-goal conditional strategies and extend SIHD's concepts to broader diffusion-based generative models [23].
自动驾驶之心招募合伙人啦!4D标注/世界模型/模型部署等方向
自动驾驶之心· 2025-10-04 04:04
Group 1 - The article announces the recruitment of 10 outstanding partners for the autonomous driving sector, focusing on course development, paper guidance, and hardware research [2] - The main areas of expertise sought include large models, multimodal models, diffusion models, end-to-end systems, embodied interaction, joint prediction, SLAM, 3D object detection, world models, closed-loop simulation, and model deployment and quantization [3] - Candidates are preferred from universities ranked within the QS200, holding a master's degree or higher, with priority given to those with significant conference contributions [4] Group 2 - The compensation package includes resource sharing for job seeking, doctoral studies, and overseas study recommendations, along with substantial cash incentives and opportunities for entrepreneurial project collaboration [5] - Interested parties are encouraged to add WeChat for consultation, specifying "organization/company + autonomous driving cooperation inquiry" [6]
业务合伙人招募!4D标注/世界模型/VLA/模型部署等方向
自动驾驶之心· 2025-10-02 03:04
Group 1 - The article announces the recruitment of 10 outstanding partners for the autonomous driving sector, focusing on course development, paper guidance, and hardware research [2] - The main areas of expertise sought include large models, multimodal models, diffusion models, end-to-end systems, embodied interaction, joint prediction, SLAM, 3D object detection, world models, closed-loop simulation, and model deployment and quantization [3] - Candidates are preferred from universities ranked within the QS200, holding a master's degree or higher, with priority given to those with significant conference contributions [4] Group 2 - The compensation package includes resource sharing for job seeking, doctoral studies, and overseas study recommendations, along with substantial cash incentives and opportunities for entrepreneurial project collaboration [5] - Interested parties are encouraged to add WeChat for consultation, specifying "organization/company + autonomous driving cooperation inquiry" [6]
首次实现第一视角视频与人体动作同步生成!新框架攻克视角-动作对齐两大技术壁垒
量子位· 2025-10-01 01:12
Core Viewpoint - The article discusses the development of EgoTwin, a framework that successfully generates first-person perspective videos and human actions in a synchronized manner, overcoming significant challenges in perspective-action alignment and causal coupling. Group 1: Challenges in First-Person Perspective Generation - The essence of first-person perspective video is that human actions drive visual recording, where head movements determine camera position and orientation, while full-body actions affect body posture and surrounding scene changes [9]. - Two main challenges are identified: 1. Perspective alignment, where the camera trajectory in generated videos must precisely match the head trajectory derived from human actions [10]. 2. Causal interaction, where each visual frame provides spatial context for human actions, and newly generated actions alter subsequent visual frames [10]. Group 2: Innovations of EgoTwin - EgoTwin employs a diffusion Transformer architecture to create a "text-video-action" tri-modal joint generation framework, addressing the aforementioned challenges through three key innovations [12]. - The first innovation is a three-channel architecture that allows the action branch to cover only the lower half of the text and video branches, ensuring effective interaction [13]. - The second innovation involves a head-centered action representation, which directly anchors actions to the head joint, achieving precise alignment with first-person observations [20]. - The third innovation is an asynchronous diffusion training framework that balances efficiency and generation quality by adapting to the different sampling rates of video and action modalities [22]. Group 3: Performance Evaluation - EgoTwin's performance was validated through extensive testing using the Nymeria dataset, which includes 170,000 five-second "text-video-action" triplets [31]. - The evaluation metrics included traditional video and action quality indicators, as well as newly proposed consistency metrics [32]. - Results showed that EgoTwin significantly outperformed baseline models across nine metrics, with notable improvements in perspective alignment error and hand visibility consistency [32][34].
工业界大佬带队!三个月搞定端到端自动驾驶
自动驾驶之心· 2025-09-29 08:45
Core Viewpoint - 2023 is identified as the year of end-to-end production, with 2024 expected to be a significant year for this development in the automotive industry, particularly in autonomous driving technology [1][3]. Group 1: End-to-End Production - Leading new forces and manufacturers have already achieved end-to-end production [1]. - There are two main paradigms in the industry: one-stage and two-stage approaches, with UniAD being a representative of the one-stage method [1]. Group 2: Development Trends - Since last year, the one-stage end-to-end approach has rapidly evolved, leading to various derivatives such as perception-based, world model-based, diffusion model-based, and VLA-based one-stage methods [3]. - Major autonomous driving companies are focusing on self-research and mass production of end-to-end autonomous driving solutions [3]. Group 3: Course Offerings - A course titled "End-to-End and VLA Autonomous Driving" has been launched, covering cutting-edge algorithms in both one-stage and two-stage end-to-end approaches [5]. - The course aims to provide insights into the latest technologies in the field, including BEV perception, visual language models, diffusion models, and reinforcement learning [5]. Group 4: Course Structure - The course consists of several chapters, starting with an introduction to end-to-end algorithms, followed by background knowledge essential for understanding the technology stack [9][10]. - The second chapter focuses on the most frequently asked technical keywords in job interviews over the next two years [10]. - Subsequent chapters delve into two-stage end-to-end methods, one-stage end-to-end methods, and practical assignments involving RLHF fine-tuning [12][13]. Group 5: Learning Outcomes - Upon completion, participants are expected to reach a level equivalent to one year of experience as an end-to-end autonomous driving algorithm engineer [19]. - The course aims to deepen understanding of key technologies such as BEV perception, multimodal large models, and reinforcement learning, enabling participants to apply learned concepts to real projects [19].