光解水制氢
Search documents
【科技日报】“补钙”后的聚合物半导体材料大幅提升光解水制氢效率
Ke Ji Ri Bao· 2025-10-11 01:41
Core Insights - Recent advancements in solar energy technology have been made by researchers at the Chinese Academy of Sciences, focusing on the efficient decomposition of water to produce hydrogen using a polymer semiconductor material known as Polytriazine Imide (PTI) [3][4] - The study highlights a novel approach called "lattice engineering," which optimizes the growth process of PTI by introducing calcium, significantly enhancing its efficiency in hydrogen production [4] Group 1: Research Findings - The introduction of calcium into PTI's structure has led to a substantial reduction in the binding energy between electrons and holes, decreasing from 48.2 meV to 15.4 meV, allowing for the automatic dissociation of excitons [4] - The new calcium-doped PTI material exhibits an initial activity in photolytic water splitting that is 3.4 times higher than the original material [4] Group 2: Material Characteristics - PTI is characterized by its low cost, environmental friendliness, and suitability for photocatalysis, making it a promising candidate for large-scale solar hydrogen production [3] - The structural modifications made through lattice engineering enable the separation of hydrogen and oxygen production processes, minimizing interference and side reactions [4]
光解水制氢,迎来新进展!
中国能源报· 2025-10-10 07:59
利用太阳能高效分解水制氢迎来新进展。 从中国科学院金属研究所获悉,该所科研人员通过给一种名为聚三嗪酰亚胺(PTI)的聚合物半导体材料"补钙",成功优化了其生长过 程,使其内部的光生电荷更容易分开,并且各行其道,大幅提升了光解水制氢效率。相关研究成果发表于《自然—通讯》杂志。 ▲ 中国科学院金属所供图 PTI是一种以碳、氮为主要成分的聚合物半导体材料,具有成本低、环境友好、结构适合光催化等优点,在实现低成本、规模化太阳能 制氢方面具有广阔前景。然而,它的实际效率一直不高,主要是因为其在光照下产生的正负电荷,也就是电子和空穴,很容易被"绑 定"在一起形成"激子",并最终重新"拥抱"在一起而消失,无法有效参与制氢和制氧反应。 "这就像在一个小房间里同时洗衣和晾衣,两件事互相干扰,效果自然不佳。问题的根源在于PTI材料本身的结构缺乏内在驱动力,难 以将这对被'绑定'的电荷分开。"论文通讯作者、中国科学院金属研究所研究员刘岗解释。 在这项研究中,科研人员提出了一种叫作"晶格工程"的策略,调整了PTI的生长"配方",将原有的氯化锂/氯化钾混合熔盐,更换为氯化 锂/氯化钙混合熔盐,使PTI在生长过程中引入钙元素,最终制备出 ...