Workflow
光解水制氢
icon
Search documents
全国首个民用液氢加氢站投运
Zhong Guo Jing Ji Wang· 2025-12-09 05:40
与此同时,攀枝花钒钛高新区内,218省道旁的马店液氢加氢站也宣布投运。该液氢加氢站总投资8300 万元,由东方电气(600875)、航天六院联合攻关建设,致力于打通攀枝花液氢"制储运加用"全链条商 业示范的关键枢纽,在现有35兆帕气氢加注能力基础上实现全面扩容,为该市氢交通工业化发展注入新 动力,为低温液氢商业建站迈向商业运营,提供多元化应用场景。 值得一提的是,马店液氢加氢站也解锁国内多项"首个"成就。该项目不仅是全国首个民用液氢充装站、 全国首个液氢"制储运加用"全链条示范工程,也是全国首个拥有"管道输氢+母子加氢"系统的加氢站。 据攀枝花钒钛高新区管委会相关负责人介绍,该项目后续还将与攀枝花氢能产业园联动,打造年产值超 百亿的氢能产业集群。此外,活动现场还展出了搭载航天六院自主研发的百公斤级车载液氢系统的一汽 解放(000800)重卡。据了解,该产品续航能力突破了800公里,较传统气氢重卡提升近一倍,百公里 耗氢量仅8公斤。液氢加氢站与长续航氢能重卡双双取得突破,也为我国氢能交通规模化发展注入了新 动能。 近日,全国首个基于"光解水"技术的商业化制氢项目与全国首个民用液氢加氢站在四川省攀枝花市投 运。攀 ...
国内首个光解水制氢商业化项目在四川攀枝花竣工投运
Zhong Guo Fa Zhan Wang· 2025-12-09 01:53
该项目不仅为绿氢规模化生产提供了新的技术路径,也为太阳能资源富集地区实现能源就地转化与利用打造了示范样板,对我国构建清洁低碳、安全高效 的能源体系具有积极意义。(何广丙、唐元龙) 据悉,项目以中国科学院过程工程研究所研发的"多面体钛酸锶聚光量子制氢氧电热一体化"技术为核心支撑,通过聚光装置驱动光催化材料,利用太阳能 实现了"零碳"制氢。项目总投资约6000万元,设计年制氢产能约200吨,日加氢能力可达1000公斤,所产氢气将主要应用于交通领域。 中国发展网讯12月4日,国内首个基于光解水制氢技术的商业化中试项目——攀枝花市多面体钛酸锶光催化制加氢一体站中试项目,在西区竣工投运。该 项目标志着我国在太阳能直接制氢技术产业化道路上迈出关键一步。 ...
氢能“制储运加用”产业链条再获新突破
Zheng Quan Ri Bao Wang· 2025-12-08 13:08
12月4日,全国首个基于"光解水"技术的商业化制氢项目与全国首个民用液氢加氢站在四川省攀枝花市 同日投运。攀枝花氢能产业的集群式突破不仅标志着我国"制储运加用"氢能产业链条再获新突破,也标 志着昔日的"百里钢城"朝打造"东方氢谷"新目标再进一步。 金沙江北岸,巴关河之西的河门口,坐落着攀枝花曾经的顶梁柱——502电厂。近年来,随着攀枝花能 源转型提速,这片煤灰遍布的电厂也脱胎换骨,生长出一片向阳盛开的"银色花海"。据攀枝花城建交通 集团党委书记、董事长陈曦介绍,这片"银色花海"是由攀枝花城建交通集团和北京纳欧氢电科技有限公 司共同投资建设的制加氢基地。 光解水制氢突破产业核心瓶颈 该基地是一个筑巢引凤、奠定产业集群基础的种子工程,采用了先进的"多面体钛酸锶聚光量子制氢氧 电热一体化技术",陈曦表示。通过144台定日镜方阵,24个聚光制氢反应器及配套设备,该项目可直接 将收集到的阳光转化为氢能。 值得一提的是,马店液氢加氢站也解锁国内多项"首个"成就。该项目不仅是全国首个民用液氢充装站, 也是全国首个液氢"制储运加用"全链条示范工程,也是全国首个拥有"管道输氢+母子加氢"系统的加氢 站。据攀枝花钒钛高新区管委会 ...
国内首个光解水制氢商业化项目投运
Xin Lang Cai Jing· 2025-12-04 11:25
据了解,该项目首创"光-氢-热"联产模式,以中国科学院过程工程研究所段东平科研团队研发的"多面体钛酸锶聚光量子制氢氧电热一体化"技术为核心支 撑,项目总投资约6000万元,设计年制氢产能约200吨,日加氢能力可达1000公斤,所产氢气将主要应用于交通领域。 12月4日,国内首个基于光解水制氢技术的商业化中试项目——攀枝花市多面体钛酸锶光催化制加氢一体站中试项目,在西区竣工投运。该项目标志着我 国在太阳能直接制氢技术产业化道路上迈出关键一步。 12月4日,国内首个基于光解水制氢技术的商业化中试项目——攀枝花市多面体钛酸锶光催化制加氢一体站中试项目,在西区竣工投运。该项目标志着我 国在太阳能直接制氢技术产业化道路上迈出关键一步。 光催化分解水制氢是利用一些半导体材料如TiO2的吸光特性,实现光解水反应的发生。半导体材料在受到光子的激发后,会产生具有较强还原能力的光 生电子,可以将吸附在半导体表面的质子或水分子还原为氢气,从而实现光催化分解水制氢。 光催化分解水制氢是利用一些半导体材料如TiO2的吸光特性,实现光解水反应的发生。半导体材料在受到光子的激发后,会产生具有较强还原能力的光 生电子,可以将吸附在半导体表面 ...
【科技日报】“补钙”后的聚合物半导体材料大幅提升光解水制氢效率
Ke Ji Ri Bao· 2025-10-11 01:41
Core Insights - Recent advancements in solar energy technology have been made by researchers at the Chinese Academy of Sciences, focusing on the efficient decomposition of water to produce hydrogen using a polymer semiconductor material known as Polytriazine Imide (PTI) [3][4] - The study highlights a novel approach called "lattice engineering," which optimizes the growth process of PTI by introducing calcium, significantly enhancing its efficiency in hydrogen production [4] Group 1: Research Findings - The introduction of calcium into PTI's structure has led to a substantial reduction in the binding energy between electrons and holes, decreasing from 48.2 meV to 15.4 meV, allowing for the automatic dissociation of excitons [4] - The new calcium-doped PTI material exhibits an initial activity in photolytic water splitting that is 3.4 times higher than the original material [4] Group 2: Material Characteristics - PTI is characterized by its low cost, environmental friendliness, and suitability for photocatalysis, making it a promising candidate for large-scale solar hydrogen production [3] - The structural modifications made through lattice engineering enable the separation of hydrogen and oxygen production processes, minimizing interference and side reactions [4]
光解水制氢,迎来新进展!
中国能源报· 2025-10-10 07:59
Core Viewpoint - Recent advancements in using solar energy for efficient water splitting to produce hydrogen have been achieved through the optimization of a polymer semiconductor material known as Polytriazine Imide (PTI) [1][4]. Group 1: Material Characteristics and Challenges - PTI is a polymer semiconductor primarily composed of carbon and nitrogen, known for its low cost, environmental friendliness, and suitability for photocatalysis, making it promising for large-scale solar hydrogen production [4]. - The efficiency of PTI has been limited due to the tendency of photo-generated charge carriers (electrons and holes) to form "excitons," which recombine and diminish their effectiveness in hydrogen and oxygen production [4][5]. Group 2: Research Innovations - Researchers introduced a "lattice engineering" strategy by changing the growth medium from a lithium/potassium chloride mixture to a lithium/calcium chloride mixture, allowing for the incorporation of calcium into the PTI structure [5]. - This "calcium supplementation" process significantly reduced the binding energy between electrons and holes from 48.2 meV to 15.4 meV, enabling excitons to dissociate and form freely moving charges [5]. Group 3: Experimental Results and Implications - The newly developed material demonstrated an initial activity in photocatalytic water splitting that is 3.4 times higher than the original PTI [5]. - The separation of electrons and holes along different pathways minimizes interference and side reactions, enhancing the overall efficiency of hydrogen production [5].