Workflow
具身智能(embodied AI)
icon
Search documents
图片生成仿真!这个AI让3D资产「开箱即用」,直接赋能机器人训练
量子位· 2025-11-23 04:09
Core Insights - The article introduces PhysX-Anything, the first framework for generating 3D assets with physical properties directly from a single image, aimed at enhancing embodied AI and robotics applications [5][27][28]. Group 1: Framework Overview - PhysX-Anything allows for the generation of high-quality, sim-ready 3D assets that include explicit geometric structures, joint movements, and physical parameters, addressing the limitations of existing 3D generation methods [5][6]. - The framework employs a "coarse-to-fine" generation approach, utilizing multiple dialogue rounds to create both global physical descriptions and detailed geometric information from a single image [8][14]. Group 2: Technical Innovations - A novel 3D representation method is introduced, achieving a compression ratio of 193 times while retaining geometric structure, inspired by voxel representation [9][27]. - The framework utilizes a tree-structured, VLM-friendly format to enhance the richness of physical attributes and textual descriptions, facilitating better understanding and reasoning by the VLM [12]. Group 3: Performance Evaluation - PhysX-Anything outperforms existing methods like URDFormer and PhysXGen in both geometric and physical attribute metrics, demonstrating superior generalization capabilities [18][20]. - Human evaluations indicate that the generated structures from PhysX-Anything received the highest scores for both geometric and physical attributes, confirming its effectiveness [22]. Group 4: Practical Applications - The generated sim-ready 3D assets can be directly imported into simulators for various robotic strategy learning tasks, showcasing their practical utility in embodied intelligence applications [25][26]. - The framework is expected to drive a paradigm shift from "visual modeling" to "physical modeling" in 3D vision and robotics research [28].
苹果AI陷“信心危机”:又一位华人高管出走,转投Meta机器人团队
3 6 Ke· 2025-09-04 09:30
划重点: 苹果AI部门持续遭遇人才流失冲击,包括机器人AI研究团队负责人张健在内的四名关键成员已确认离职。 自Meta开启硅谷AI人才争夺战以来,苹果已经流失了包括基础模型团队前负责人庞若鸣在内的至少10名AI人才,他们的去向 包括Meta、OpenAI、Anthropic和xAI等竞争对手。 苹果内部曾考虑用外部第三方模型支持下一代Siri,且高层否决开源部分模型提议,导致AI部门的人才流失已演变为一场"信 心危机"。 01.华人高管张健,从苹果AI核心到Meta机器人新力军 在苹果最新一轮AI人才离职潮中,机器人AI研究领域核心人物张健的离开格外引人关注。他出生于中国,本科毕业于浙江大学机电一体 化工程专业,后远赴美国普渡大学深造并获得工程学博士学位。博士毕业后,他曾留校担任讲师,积累了丰富的学术经验。2015年,张 健正式加入苹果,离职时已在苹果任职十年。 在苹果任职期间,张健的岗位与研究方向具有战略重要性。他担任专注于自动化技术及AI产品应用的机器人研究团队负责人。该团队隶 属人工智能与机器学习部门,他带领的十余人小型团队专注于机器人智能与人机交互领域研究,与苹果的机器人产品开发部门分属不同 体系,后 ...