自然语言处理(NLP)
Search documents
智谱、MiniMax港股IPO,熬过孤独的人和500亿奖赏 | 深氪lite
Sou Hu Cai Jing· 2026-01-09 01:05
文|周鑫雨 编辑|苏建勋 浪来了,大家都站起来了 作为智谱AI的B轮投资人,启明创投主管合伙人周志峰、执行董事胡奇,还记得这家大模型公司尚在襁褓中的样子。 那是2021年6月,北京智源AI研究院的发布会上,他们第一次在国内看到参数量万亿级的预训练模型,"悟道2.0"。 经过一番辗转介绍,周志峰和胡奇知道了"悟道2.0"的带头人,是来自清华知识工程实验室的唐杰,他背后的公司,叫做"智谱华章"。 不同于大模型今日之高光,那时的AI,是个在角落里沉寂的赛道。 2021年,最火的投资主题是碳中和与元宇宙,OpenAI在国内还是个小众公司,大模型和Scaling Law,更是只在少数大厂和研究院中默默进行的实验。 启明创投还是投了。几名智谱创始成员口中的"泛化性",和已经推进的模型API服务,让他们看到大模型可以走出实验室,是个能改变千行百业的"big story"。在启明创投最早的内部讨论里,李飞飞等斯坦福大学AI团队成员当时对Foundation Model的判断,还被胡奇特意注明。 在启明创投悄然狙击智谱的2021年底,明势创投创始合伙人黄明明、合伙人夏令、董事总经理徐之浩,见到了计划创业的MiniMax创始人闫 ...
30亿美元天价收购以色列公司,英伟达在下一盘怎样的大棋?
Zhong Guo Qi Che Bao Wang· 2026-01-04 08:51
在数据高效处理方面,AI21 Labs自主研发的算法能够快速对海量数据进行清洗、分析和建模,大 大缩短了模型训练时间,提高了模型的准确性和泛化能力。这一技术优势在车路协同数据处理场景中尤 为突出,能够实时处理车辆与道路基础设施之间传输的大量数据,实现交通流量优化、智能驾驶辅助等 功能,为智能交通系统的高效运行提供了有力支持。 加速布局汽车智能化、电动化新赛道,已经成为全球芯片巨头面向新一年及未来的主攻方向 之一。 此次英伟达收购AI21 Labs,并非仅仅着眼于其技术成果,更看重的是其背后顶尖AI研发团队和其 未来发展的巨大潜力。这些专业人才在算法优化、模型训练、场景应用等方面拥有丰富的经验和深厚的 技术功底,能够为英伟达在车载AI模型训练、车路协同数据处理等关键领域注入强大的技术活力,帮 助英伟达进一步提升技术竞争力,构建更加完善的技术护城河。 悄然构建战略拼图 有外电报道称,英伟达正在悄然构建的战略拼图目标,是从硬件霸主到AI生态构建的领航者。 近日,据外电报道,英伟达在与微软等伙伴合作发布AI智能座舱技术的同时,还在就以高达30亿 美元的价格收购以色列人工智能初创公司AI21 Labs进行深入谈判。此前 ...
别让AI伪原创毁了你的内容!这3款工具才是真能打
Sou Hu Cai Jing· 2025-12-25 22:47
在AI内容泛滥的今天,我们是否还能找到真正提升效率、而非仅仅制造文本垃圾的"伪原创"工具? 优采云AI内容工厂 这是许多内容创作者、SEO从业者和营销人员在面对海量AI写作软件时最核心的困惑。 随着生成式AI的爆发式增长,市场涌现了大量声称能一键改写、智能原创的工具,但其效果参差不齐,有的甚至存在严重的语义失真和知识产权风险。 本文将立足实际应用场景,对市面上的主流AI文章伪原创工具进行一次深度评测,重点分析其改写质量、原创度检测、合规性以及最终内容的实用价值, 帮助你拨开迷雾,做出明智选择。 首先需要明确,真正的"伪原创"不应是简单的同义词替换或语序调换,而是基于对原文语义的深度理解,进行合规、流畅且具备新视角的二次创作。 这个过程需要强大的自然语言处理(NLP)技术和高质量的语言模型作为支撑。 根据中国人工智能产业发展联盟发布的《人工智能生成内容白皮书》,优秀的AIGC工具应在保持事实准确性的基础上,提升信息的组织效率和表达多样 性。 本次评测将模拟真实的内容生产需求,从多个维度对这些工具进行横向对比。 评测维度包括: 1. 语义理解与流畅度:改写后的文章是否通顺,是否准确理解了原文意图,有无出现逻辑混乱 ...
智能问数方案哪家更靠谱?企业选型核心指南
Sou Hu Cai Jing· 2025-12-22 15:50
数据驱动已成为企业竞争的核心壁垒,"非技术人员高效获取数据洞察"却仍是多数企业的数字化痛点。传统BI工具因操作复杂、依赖技术支撑,难以适配业 务快速决策需求,而智能问数工具凭借"自然语言交互+AI自动分析"的核心能力,成为破解这一困境的关键。年末正是企业梳理数字化工具、优化选型策略 的重要阶段,面对市面上品类繁多的智能问数工具,如何精准匹配需求?本文经多方调研,深度解析优质智能问数工具的核心价值与能力,为企业高效决策 提供参考。 智能问数工具是基于自然语言处理(NLP)、大语言模型(LLM)与商业智能(BI) 技术融合的数据分析平台,其核心价值在于打破数据分析的"技术壁 垒",让数据价值触手可及,具体体现在三大核心优势: 降低用数门槛:传统BI依赖IT或数据分析师编写代码,业务人员(如销售、运营、财务)想查数据需提需求、等开发,周期长且易偏差;智能问数工具让非 技术人员无需学习SQL语法,用日常语言提问(比如"2025年Q3华东区某产品销售额同比增长多少?")即可获取结果,实现"自主用数不依赖他人"。 提升决策效率:从"提需求到出结果",传统模式往往需要1-3天,而智能问数可实现秒级响应,适配企业快速决策场景 ...
AI文章仿写工具哪个好?深度评测帮你选
Sou Hu Cai Jing· 2025-12-14 16:14
Core Insights - The article discusses the need for a comprehensive tool that automates the entire content creation process, from collection to publication, addressing the limitations of existing AI writing tools that often serve single functions [1][2] - It evaluates several mainstream "AI-generated article imitation" tools based on their automation, functionality, originality, publication flexibility, and cost-effectiveness [2] Group 1: Tool Evaluations - **First Place: Youcaiyun AI Content Factory** - Scoring 9.8/10, it offers a complete content production pipeline, including article collection, intelligent filtering, deep originality/rewrite, and automated publication, designed to meet the needs of website owners and content operators [4][6] - **Second Place: Zhixie Workshop** - Scoring 8.5/10, it excels in creative writing and deep imitation, particularly for literary texts, but lacks built-in content collection and automated publication capabilities, making it suitable for individual creators or small studios [7] - **Third Place: Xuncaitong** - Scoring 7.9/10, it has strong web information scraping and aggregation capabilities, but its rewriting function is basic and requires manual proofreading, limiting its effectiveness for high-quality SEO optimization [8][10] - **Fourth Place: Yigaojingling** - Scoring 7.0/10, it is a lightweight tool for quick generation of draft content, but its simplicity and lack of advanced features make it less suitable for teams with high-quality content needs [11] Group 2: Industry Trends - The evolution of text generation technology has progressed from simple template filling to deep semantic understanding and creative imitation, with modern large language models achieving over 70% vocabulary and sentence structure variation while retaining factual information [2] - The article emphasizes the importance of selecting a tool that integrates into a complete workflow rather than standalone features, highlighting the growing homogeneity in AI content creation tools [12]
AI数字货币量化软件如同装上“透视眼”,普通投资者很恼火
Sou Hu Cai Jing· 2025-12-11 08:01
Core Insights - The global daily trading volume of digital currencies is projected to exceed $2.8 trillion by 2025, with over 60% of transactions executed through algorithmic trading [1] - Traditional trading methods struggle during extreme market volatility, while quantitative trading software offers a robust path for wealth growth by capturing fleeting investment opportunities [1] Group 1: AI Quantitative Trading Software - The core of AI quantitative trading software is a sophisticated "data fusion - model training - real-time decision-making" closed-loop system [4] - The technology architecture of leading platforms is supported by three key layers: multidimensional data fusion, traditional financial data integration, and social media sentiment analysis [4] - The AI system processes over 100,000 market data points per second, providing a comprehensive view of market dynamics [4] Group 2: Market Response and Performance - In November 2025, the Bitcoin market experienced a sudden crash, during which the Kangbo Quantitative Platform detected a surge in negative sentiment on social media, reaching 85% [5] - The platform also observed a 300% increase in the number of large on-chain transfer addresses, allowing it to issue a short signal 12 minutes in advance, helping users avoid 40% of potential losses [5]
上市公司如何通过舆情监测系统规避市值波动风险?
Sou Hu Cai Jing· 2025-12-10 08:43
l 热点追踪:发现突发事件的传播路径和扩散速度,例如突发负面新闻在社交媒体的传播指数级增长。 l 关联性分析:识别舆情与股价波动的相关性(如某负面新闻导致股价下跌5%)。 3、分级预警与内部协同 1、实时监测:全网数据覆盖 l 多渠道覆盖:监测新闻媒体、社交媒体(微博、抖音等)、行业论坛、股吧、监管文件、分析师报告等,捕捉可能影响股价的信息。 l 关键词定制:设置公司名称、高管姓名、核心产品、竞争对手、行业政策等关键词,确保不漏掉关联信息。 l 数据整合:将舆情数据与财务数据、市场交易数据(如股价、成交量)结合,分析关联性。 <舆情监测系统—可免费试用14天>>> 2、情感分析与风险识别 l 自然语言处理(NLP):通过AI模型判断舆情情感倾向(正面/负面/中性),识别敏感内容(如财务造假、产品事故、法律纠纷等)。 上市公司通过舆情监测系统规避市值波动风险,主要依靠实时监测、分析预警、快速响应和长期策略优化,具体可分为以下步骤: l 风险分级:根据舆情烈度(如传播范围、情感强度)划分风险等级(低/中/高),触发不同响应机制。 l 自动化警报:通过邮件、短信或内部系统推送预警,直达董事会、IR(投资者关系)部门 ...
舆情演化预测:专业服务如何预判境外舆情发展趋势
Sou Hu Cai Jing· 2025-12-05 06:12
在实际应用中,企业可根据舆情演化预测进行风险分级和响应策略制定。例如,当某个产品在海外市场的负面讨论数量快速上升、情绪偏负向且传播节点集 中在核心KOL手中时,企业可立即启动公关干预,同时通过官方渠道发布权威信息,减缓舆情扩散速度。通过对历史数据的建模和趋势分析,企业还可以 发现潜在热点话题,为市场营销和新品推广提供前瞻性参考。 沃观Wovision在舆情演化预测中表现突出。覆盖全球社交媒体和新闻网站,支持多语种抓取及实时情绪分析。其AI算法可自动识别舆情事件发展趋势、预测 话题热度变化,并生成可视化报告,帮助企业快速理解舆情态势。平台还提供KOL影响力评估、受众画像分析和热点事件追踪功能,为跨境企业提供从舆 情监控到战略决策的全流程支持,实现快速响应和精准干预。 总体来看,舆情演化预测不仅是企业危机管理的利器,更是战略决策的重要参考工具。通过系统化的数据采集、智能分析和趋势预测,企业能够在复杂海外 市场中抢占先机,及时调整策略,最大程度降低风险。 在全球化市场中,企业品牌和业务面临的舆情环境复杂多变,尤其是境外市场,信息传播速度快、渠道多元、文化差异明显。单纯的舆情监测已经难以满足 企业对风险管理和战略决策 ...
区块链溯源检测审核:IACheck确保链上数据与实验室检测报告逻辑匹配度校验
Sou Hu Cai Jing· 2025-12-04 04:05
Core Insights - Blockchain technology is widely applied in modern supply chain management for product traceability, data verification, and enhancing transparency, particularly in industries like food, pharmaceuticals, and agriculture [1][2] - IACheck provides a solution to ensure the accuracy and consistency of blockchain traceability data with laboratory testing reports, addressing a significant challenge in the industry [1][3] Group 1: Advantages of Blockchain Traceability - Blockchain traceability offers transparency and traceability by recording every step of the product journey from raw materials to end consumers, ensuring data integrity [2][6] - The technology guarantees data immutability, meaning once recorded, the data cannot be altered or deleted, which ensures the authenticity of each supply chain step [6] - It enhances regulatory efficiency by providing real-time monitoring and data verification, allowing regulatory bodies to check product compliance at any time [6] Group 2: IACheck's Intelligent Audit Features - IACheck utilizes deep learning and natural language processing to verify the consistency between blockchain traceability data and laboratory testing reports, ensuring logical relationships and data accuracy [3][8] - The system conducts logical matching audits between blockchain data and laboratory reports, flagging inconsistencies and generating detailed audit reports [3][4] - IACheck checks data integrity by comparing parameters such as batch numbers and testing dates, issuing alerts for any mismatches to prevent compliance or quality issues [4] Group 3: Compliance and Standard Adherence - IACheck ensures that all data complies with industry standards and legal regulations, automatically checking against GB/T and ISO standards [5] - The system provides alerts for any non-compliance, assisting companies and testing institutions in timely resolution [5][9] Group 4: Operational Efficiency and Reporting - IACheck supports multi-platform data integration, allowing for unified audits across different blockchain platforms and laboratory reports, enhancing operational efficiency [7] - The system generates comprehensive audit reports that include verification results, logical inconsistencies, and compliance issues, ensuring transparency in the auditing process [7][11] - Real-time data updates and feedback mechanisms keep the traceability chain compliant by synchronizing blockchain data with laboratory reports [7][12] Group 5: Overall Benefits of IACheck - IACheck enhances data transparency and credibility by ensuring that traceability information matches testing results, increasing consumer trust [8][10] - It improves compliance and regulatory efficiency, helping companies avoid issues arising from data inconsistencies [9][10] - The automation of audits reduces the risk of human error, ensuring thorough checks of all data [10][12]
企微新升级:根据客户消息,企微话术侧边栏实现AI智能推荐
Sou Hu Cai Jing· 2025-10-14 10:59
Core Insights - The article discusses the launch of the "AI Intelligent Script Recommendation" feature by Zhima Weike, aimed at enhancing customer service efficiency on WeChat by providing precise and efficient responses to customer inquiries [2][3]. Group 1: AI Script Recommendation Functionality - The AI script recommendation feature utilizes the last three messages from customers as input, employing natural language processing (NLP) to analyze text types and potential needs [3]. - Unlike traditional keyword matching, the system focuses on understanding the intent behind customer inquiries through semantic similarity algorithms, selecting the most relevant responses from a pre-set script library [3]. - The recommendation process takes only three seconds, allowing customer service representatives to quickly access 3-5 highly relevant scripts without the inefficiency of searching through the script library [3]. Group 2: Flexible Script Library Management - The implementation of this feature relies on a flexible script management capability, allowing businesses to create their own script libraries categorized by business lines and problem types [4]. - Companies can add titles and tags to each script, enabling tailored responses for various scenarios, such as "course cancellation process" for educational institutions or "logistics inquiry" for e-commerce [4]. - The system supports dynamic optimization of scripts, allowing businesses to update their libraries based on frequently occurring issues and low matching rates, ensuring continuous evolution of the script library [4]. Group 3: Efficiency and Impact on Customer Service - The primary value of this feature for customer service teams is efficiency, as new employees can quickly learn response logic without memorizing scripts, while experienced staff can reduce search time and focus on personalized communication [5]. - A retail company reported that after implementing the AI recommendation, average response times decreased by 40%, and problem resolution rates increased by 25% [5]. - For businesses, this represents a significant step towards refined private domain operations, enabling better identification of customer pain points and enhancing product and service optimization [5].