Workflow
边缘模型
icon
Search documents
张亚勤院士:AI五大新趋势,物理智能快速演进,2035年机器人数量或比人多
机器人圈· 2025-10-20 09:16
Core Insights - The rapid development of the AI industry is accelerating iterations across various sectors, presenting significant industrial opportunities [3] - The scale of the AI industry is projected to be at least 100 times larger than the previous generation, indicating substantial growth potential [5] Group 1: Trends in AI Development - The first major trend is the transition from discriminative AI to generative AI, now evolving towards agent-based AI, with task lengths doubling and accuracy exceeding 50% in the past seven months [7] - The second trend indicates a slowdown in the scaling law during the pre-training phase, with more focus shifting to post-training stages like reasoning and agent applications, while reasoning costs have decreased by 10 times [7] - The third trend highlights the rapid advancement of physical and biological intelligence, particularly in the intelligent driving sector, with expectations for 10% of vehicles to have L4 capabilities by 2030 [7] Group 2: AI Risks and Industry Structure - The emergence of agent-based AI has significantly increased AI risks, necessitating greater attention from global enterprises and governments [8] - The fifth trend reveals a new industrial structure characterized by foundational large models, vertical models, and edge models, with expectations for 8-10 foundational large models globally by 2026, including 3-4 from China and the same from the U.S. [8] - The future is anticipated to favor open-source models, with a projected ratio of 4:1 between open-source and closed-source models [8]
专家:2035年机器人数量或比人多
Core Insights - The rapid development of the AI industry is accelerating iterations across various sectors, presenting significant industrial opportunities [1] Group 1: Trends in AI Industry - The first major trend is the transition from discriminative AI to generative AI, now evolving towards agent-based AI, with task length doubling and accuracy exceeding 50% in the past seven months [3] - The second trend indicates a slowdown in the scaling law during the pre-training phase, shifting focus to post-training stages like inference and agent applications, with inference costs decreasing by 10 times while computational complexity for agents has increased by 10 times [3] - The third trend highlights the rapid development of physical and biological intelligence, particularly in the smart driving sector, predicting that by 2030, 10% of vehicles will possess Level 4 autonomous driving capabilities [3] Group 2: Future Projections and Risks - The fourth trend points to a significant rise in AI risks, with the emergence of agents increasing risks at least twofold, necessitating greater attention from global enterprises and governments [4] - The fifth trend reveals a new industrial landscape for AI, characterized by a combination of foundational large models, vertical models, and edge models, with expectations that by 2026, there will be approximately 8-10 foundational large models globally, including 3-4 from China and 3-4 from the U.S. [4] - The future is expected to favor open-source models, with a projected ratio of 4:1 between open-source and closed-source models [4]
中国工程院外籍院士张亚勤:AI五大新趋势,物理智能快速演进
Core Insights - The AI industry is rapidly evolving, leading to accelerated iterations across various sectors, with significant opportunities arising from the integration of information, physical, and biological intelligence [1]. Group 1: Trends in AI Development - The first trend is the transition from discriminative AI to generative AI, now moving towards agent-based AI, with task lengths doubling and accuracy exceeding 50% in the past seven months [3]. - The second trend indicates a slowdown in the scaling law during the pre-training phase, shifting focus to post-training stages like inference and agent applications, while the overall intellectual ceiling continues to advance [3]. - The third trend highlights the rapid development of physical and biological intelligence, particularly in the smart driving sector, predicting that by 2030, 10% of vehicles will possess Level 4 autonomous driving capabilities [3]. Group 2: AI Risks and Industry Structure - The fourth trend points to a significant increase in AI risks, with the emergence of agent-based AI doubling the associated risks, necessitating greater attention from global enterprises and governments [4]. - The fifth trend reveals a new industrial landscape characterized by foundational large models, vertical models, and edge models, with expectations that by 2026, there will be around 8-10 foundational large models globally, with China and the US each having 3-4 [4]. - The future is expected to favor open-source models, with a projected ratio of 4:1 between open-source and closed-source models [4].