BEV感知技术

Search documents
最近被公司通知不续签了。。。
自动驾驶之心· 2025-08-17 03:23
Core Insights - The smart driving industry is currently in a critical phase of competing on technology and cost, with many companies struggling to survive in 2024, although the overall environment has improved slightly this year [2][6] - Traditional planning and control (规控) has matured over the past decade, and professionals in this field need to continuously update their technical skills to remain competitive [7][8] Group 1: Industry Trends - The smart driving sector has faced significant challenges, with many companies unable to endure the tough conditions last year, but some, like Xiaopeng, have found a way to thrive [6] - The price war in the industry has been curtailed by government intervention, yet competition remains fierce [6] Group 2: Career Guidance - For professionals in traditional planning and control, it is advisable to continue in their current roles while also learning new technologies, particularly in emerging areas like end-to-end models and large models [7][8] - There is a growing trend of professionals transitioning from traditional planning and control to end-to-end and large model applications, with many finding success in these new areas [8] Group 3: Community and Resources - The "Automated Driving Heart Knowledge Planet" community offers a platform for technical exchange, featuring members from renowned universities and leading companies in the smart driving field [21] - The community provides access to a wealth of resources, including over 40 technical routes, open-source projects, and job opportunities in the automated driving sector [19][21]
BEV高频面试问题汇总!(纯视觉&多模态融合算法)
自动驾驶之心· 2025-06-25 02:30
Core Viewpoint - The article discusses the rapid advancements in BEV (Bird's Eye View) perception technology, highlighting its significance in the autonomous driving industry and the various companies investing in its development [2]. Group 1: BEV Perception Technology - BEV perception has become a competitive area in visual perception, with various models like BEVDet, PETR, and InternBEV gaining traction since the introduction of BEVFormer [2]. - The technology is being integrated into production by companies such as Horizon, WeRide, XPeng, BYD, and Haomo, indicating a shift towards practical applications in autonomous driving [2]. Group 2: Technical Insights - In BEVFormer, the temporal and spatial self-attention modules utilize BEV queries, with keys and values derived from historical BEV information and image features [3]. - The grid_sample warp in BEVDet4D is explained as a method for transforming coordinates based on camera parameters and predefined BEV grids, facilitating pixel mapping from 2D images to BEV space [3]. Group 3: Algorithm and Performance - Lightweight BEV algorithms such as fast-bev and TRT versions of BEVDet and BEVDepth are noted for their deployment in vehicle systems [5]. - The physical space size corresponding to a BEV bird's eye matrix is typically around 50 meters, with pure visual solutions achieving stable performance up to this distance [6]. Group 4: Community and Collaboration - The article mentions the establishment of a knowledge-sharing platform for the autonomous driving industry, aimed at fostering technical exchanges among students and professionals from various prestigious universities and companies [8].