Ollama

Search documents
深度 | 安永高轶峰:AI浪潮中,安全是新的护城河
硬AI· 2025-08-04 09:46
安全风险管理不仅是成本中心,而是企业在AI浪潮中构建品牌声誉并赢得市场信任的价值引擎。 硬·AI 作者 | 硬 AI 编辑 | 硬 AI 将安全合规从被动的 "约束条件"转变为主动的"战略优势",是AI企业在技术创新趋于同质化后的关键胜负 手。 这是安永大中华区网络安全与隐私保护咨询服务主管合伙人高轶峰,在今年世界人工智能大会( WAIC) 期间向我们提出的核心论断。 他认为,安全已不再是单纯的运营成本,而是直接决定企业信任与市场估值的核心资产。 以下为本次对话的重点梳理: AI风险 早已 " 在身边 " 。 近期知名开源大模型工具 Ollama被曝出默认开放且无鉴权的端口漏洞,表明AI 风险已从实验室走向实际场景。此外,因算法黑箱与模型幻觉导致的风险隐蔽性强、责任归属难度高,企 业必须建立适应新特性的AI安全防护体系。 "以隐私换便利"不可取。 在 AI背景下,"以隐私换便利"这种观念带来的风险是不可逆的。AI能够通过碎片 化数据精准重建个人画像,推断用户尚未意识到的敏感信息,可能导致歧视性定价、精准诈骗等安全风 险。这类风险一旦爆发,其危害远超普通的信息泄露事件。 AI风险是个"新物种", 传统方法难以应 ...
X @Avi Chawla
Avi Chawla· 2025-07-22 19:12
Open Source LLM Framework - A framework connects any LLM to any MCP server (open-source) [1] - The framework enables building custom MCP Agents without closed-source apps [1] - Compatible with Ollama, LangChain, etc [1] - Allows building 100% local MCP clients [1]
X @Avi Chawla
Avi Chawla· 2025-07-22 06:30
LLM & MCP Integration - A framework enables connecting any LLM to any MCP server [1] - The framework facilitates building custom MCP Agents without relying on closed-source applications [1] - It is compatible with tools like Ollama and LangChain [1] - The framework allows building 100% local MCP clients [1]
X @Avi Chawla
Avi Chawla· 2025-06-24 06:30
We have fine-tuned DeepSeek (distilled Llama).Now we can interact with it like any other model running on Ollama using:- The CLI- Ollama's Python package- Ollama's LlamaIndex integration, etc. https://t.co/bCNUqtLgaJ ...
靠"氛围编程"狂揽 2 亿美金,Supabase 成 AI 时代最性感的开源数据库
AI前线· 2025-05-20 01:24
编译 | Tina、核子可乐 2020 年,开源数据库 Supabase 刚成立时,CEO Paul Copplestone 或许难以预见,它将在 2025 年 站上"Vibe Coding"这一开发趋势的风口。 本周,Supabase 的发展已经迎来高光时刻:据《财富》杂志报道, Supabase 宣布完成 2 亿美元 D 轮融资,投后估值 20 亿美元。本轮由 Accel 领投,Coatue、Y Combinator、Craft Ventures 及老股 东 Felicis 参投。距离其上一轮 8000 万美元融资仅过去 7 个月,累计融资已达近 4 亿美元。 Supabase 的崛起也反映出开源数据库在 AI 应用时代的新定位。凭借"开箱即用"的数据库体验, Supabase 极大降低了 SQL 数据库在实际开发中的接入门槛,也因此成为 Lovable 等快速增长的 Vibe Coding 工具的首选后端。其 Slogan "Build in a weekend, scale to millions(周末搭建,支撑百 万级用户)",精准切中新一代 AI 原生应用的需求。 Vibe Coding 流程通常 ...
李礼辉:构建可信任的数字金融 | 金融与科技
清华金融评论· 2025-05-11 10:39
Core Viewpoint - Trustworthy digital finance should possess characteristics such as model reliability, strong interpretability, and high security, while also clarifying the legal status, behavioral boundaries, and responsibilities of financial intelligent agents [2][12]. Group 1: Breakthroughs in AI Models - China's DeepSeek-V3 has received high praise in global AI model rankings, being compared favorably to GPT-4o, with training costs significantly lower at under $6 million compared to GPT-4o's $100 million [4]. - Innovations in algorithms, such as MLA multi-head potential attention mechanisms and MoE mixed expert architecture, are crucial for the future of AI development in China, particularly for financial institutions [4][5]. Group 2: Challenges in AI Technology - Security risks remain prominent, including unauthorized access to models, data theft, and malicious attacks that can compromise model integrity and stability [8]. - The phenomenon of "model hallucination" persists, with various models including Grok-3 and GPT-4 exhibiting certain levels of hallucination rates [9]. - Issues such as model bias, algorithmic resonance, and privacy breaches continue to pose challenges, complicating the interpretability of AI models [10]. Group 3: Digital Finance Innovation - The evolution of digital finance must balance security and efficiency, transitioning from mere usability to leading-edge capabilities [12][13]. - Trustworthiness in digital finance innovation is essential, requiring proactive measures to prevent AI pitfalls and ensure model reliability and interpretability [13]. Group 4: Pathways to Building Trustworthy Digital Finance - High reliability is critical, necessitating the implementation of advanced security measures, including firewalls and zero-trust architectures, to protect against malicious attacks [15]. - Interpretability is a key requirement, enabling the transformation of model behavior into understandable rules and utilizing visualization tools to clarify model processes [15]. - Legal frameworks must be established to define the status and responsibilities of financial intelligent agents, ensuring they operate within clear boundaries [16]. - Economic efficiency can be achieved by pre-training industry-level financial models and customizing enterprise-level applications, fostering collaboration between tech firms and financial institutions [16].