Workflow
ResNet
icon
Search documents
何恺明MIT两名新弟子曝光:首次有女生入组,另一位是FNO发明者,均为华人
量子位· 2025-11-06 04:04
Core Insights - The article highlights the recruitment of two new Chinese students, Hu Keya and Li Zongyi, by AI expert He Kaiming at MIT, emphasizing their impressive academic backgrounds and contributions to the field of AI [1][4]. Group 1: Hu Keya's Background and Achievements - Hu Keya graduated from Shanghai Jiao Tong University and was involved in the Brain-Machine Interface Laboratory, focusing on AI applications in neuroscience [5][7]. - She authored a paper on self-supervised EEG representation learning, which was accepted at the EMBC conference, and presented her work in the U.S. [8][10]. - Hu participated in a project that improved self-supervised learning, leading to a paper accepted at the Cognitive Science 2025 conference [10]. - During her undergraduate studies, she interned at Cornell University, contributing to a project on program synthesis and code repair, resulting in a paper accepted at NeurIPS 2024 [11][12]. - Hu Keya led her team to win the "Best Paper Award" at the ARC Prize 2024 competition, showcasing her innovative approach to AI problem-solving [15][17]. - By the end of her undergraduate studies, she had published four high-impact papers, making her a highly sought-after candidate for PhD programs, ultimately choosing MIT [21][22]. Group 2: Li Zongyi's Contributions - Li Zongyi, known for his work on the Fourier Neural Operator (FNO), published a significant paper during his PhD that enabled the large-scale application of neural operators [27][29]. - The FNO allows neural networks to learn solutions to physical equations efficiently, significantly improving computational speed in various scientific applications [30][34]. - Li Zongyi's research has made him a key figure in the field of neural operators, with over 12,000 citations of his work [36]. - Currently, he is a postdoctoral researcher at MIT and is set to join New York University as an assistant professor in the upcoming fall [38][39]. Group 3: He Kaiming's Research Focus - He Kaiming has indicated that "AI for Science" will be a primary focus of his research in the coming years, aligning with the expertise of his newly recruited team members [46][48]. - The combination of Hu Keya's background in neuroscience and Li Zongyi's expertise in neural operators strengthens the team's capabilities in advancing AI applications in scientific research [48][49].
X @Avi Chawla
Avi Chawla· 2025-10-25 06:31
Model Calibration Importance - Modern neural networks can be misleading due to overconfidence in predictions [1][2] - Calibration ensures predicted probabilities align with actual outcomes, crucial for reliable decision-making [2][3] - Overly confident but inaccurate models can lead to suboptimal decisions, exemplified by unnecessary medical tests [3] Calibration Assessment - Reliability Diagrams visually inspect model calibration by plotting expected accuracy against confidence [4] - Expected Calibration Error (ECE) quantifies miscalibration, approximated by averaging accuracy/confidence differences across bins [6] Calibration Techniques - Calibration is important when probabilities matter and models are operationally similar [7] - Binary classification models can be calibrated using histogram binning, isotonic regression, or Platt scaling [7] - Multiclass classification models can be calibrated using binning methods or matrix and vector scaling [7] Experimental Results - LeNet model achieved an accuracy of approximately 55% with an average confidence of approximately 54% [5] - ResNet model achieved an accuracy of approximately 70% but with a higher average confidence of approximately 90%, indicating overconfidence [5] - ResNet model thinks it's 90% confident in its predictions, in reality, it only turns out to be 70% accurate [2]
LSTM之父向何恺明开炮:我学生才是残差学习奠基人
量子位· 2025-10-19 06:10
Core Viewpoint - The article discusses the historical context and contributions of Sepp Hochreiter and Jürgen Schmidhuber in the development of residual learning and its impact on deep learning, emphasizing that the concept of residual connections was introduced by Hochreiter in 1991, long before its popularization in ResNet [3][12][26]. Group 1: Historical Contributions - Sepp Hochreiter systematically analyzed the vanishing gradient problem in his 1991 doctoral thesis and proposed the use of recurrent residual connections to address this issue [3][12]. - The core idea of recurrent residual connections involves a self-connecting neuron with a fixed weight of 1.0, allowing the error signal to remain constant during backpropagation [13][14]. - The introduction of LSTM in 1997 by Hochreiter and Schmidhuber built upon this foundational concept, enabling effective long-term dependency learning in tasks such as speech and language processing [18][19]. Group 2: Evolution of Residual Learning - The Highway network, introduced in 2015, successfully trained deep feedforward networks with hundreds of layers by incorporating the gated residual concept from LSTM [23]. - ResNet, which gained significant attention in the same year, utilized residual connections to stabilize error propagation in deep networks, allowing for the training of networks with hundreds of layers [24][26]. - Both Highway networks and ResNet share similarities with the foundational principles established by Hochreiter in 1991, demonstrating the enduring relevance of his contributions to deep learning [26]. Group 3: Ongoing Debates and Recognition - Jürgen Schmidhuber has publicly claimed that various architectures, including AlexNet, VGG Net, GANs, and Transformers, were inspired by his lab's work, although these claims have not been universally accepted [28][31]. - The ongoing debate regarding the attribution of contributions in deep learning highlights the complexities of recognizing foundational work in a rapidly evolving field [10][32].
任少卿加入中科大......
自动驾驶之心· 2025-09-20 05:35
Core Viewpoint - Ren Shaoqing, a prominent figure in AI and autonomous driving, has returned to his alma mater, the University of Science and Technology of China, to start a new academic program focusing on advanced AI topics [4][6]. Group 1: Background of Ren Shaoqing - Ren Shaoqing is a co-founder of Momenta and former Vice President of NIO, with a strong academic background including a PhD from the University of Science and Technology of China [4]. - He is recognized for his contributions to AI, particularly as the author of ResNet and Faster R-CNN, with over 440,000 citations, making him the most cited Chinese scholar globally [4]. Group 2: Academic Program Details - The new program will focus on areas such as AGI (Artificial General Intelligence), world models, embodied intelligence, and AI for Science [6]. - The program is open for recruitment of master's and doctoral students, with urgent interviews scheduled for students with recommendation qualifications starting next Monday [6].
任少卿在中科大招生了!硕博都可,推免学生下周一紧急面试
量子位· 2025-09-20 05:12
Core Viewpoint - Ren Shaoqing, a prominent figure in AI and computer vision, is starting a recruitment program at his alma mater, the University of Science and Technology of China, focusing on advanced topics in AI such as AGI, world models, embodied intelligence, and AI for Science [1][2]. Group 1: Recruitment Details - The recruitment is open for both master's and doctoral students, with emergency interviews starting on the upcoming Monday for students with recommendation qualifications [3]. - Interested students can send their resumes to Ren Shaoqing's email for inquiries regarding the application process and interview details [16]. Group 2: Background of Ren Shaoqing - Ren Shaoqing is an expert in computer vision and autonomous driving, having graduated from the University of Science and Technology of China and obtained a joint PhD with Microsoft Research Asia [4][5]. - He has been recognized as one of the most influential scholars in AI, ranking 10th in the AI 2000 list, and received the Future Science Prize in Mathematics and Computer Science in 2023 [6]. Group 3: Contributions to AI - Ren is a co-author of ResNet, a groundbreaking work in deep learning that addresses the vanishing gradient problem, significantly impacting fields requiring high perception capabilities like computer vision and autonomous driving [7]. - ResNet has received over 290,000 citations and won the Best Paper Award at CVPR 2016 [8]. - He also contributed to Faster R-CNN, an efficient two-stage object detection algorithm that balances speed and accuracy [10]. Group 4: Role in NIO - After completing his PhD, Ren co-founded Momenta and later joined NIO, where he played a key role in developing autonomous driving algorithms and leading the smart driving R&D team [13]. - At NIO, he developed the NIO World Model (NWM), which integrates spatiotemporal cognition and generative capabilities, allowing for high-fidelity scene reconstruction and long-term scenario simulation [14][15].
科学界论文高引第一人易主,Hinton、何恺明进总榜前五!
机器人圈· 2025-08-27 09:41
Core Insights - Yoshua Bengio has become the most cited scientist in history with a total citation count of 973,655 and 698,008 citations in the last five years [1] - The ranking is based on total citation counts and recent citation indices from AD Scientific Index, which evaluates scientists across various disciplines [1] - Bengio's work on Generative Adversarial Networks (GANs) has surpassed 100,000 citations, indicating significant impact in the AI field [1] Group 1 - The second-ranked scientist is Geoffrey Hinton, with over 950,000 total citations and more than 570,000 citations in the last five years [3] - Hinton's collaboration on the AlexNet paper has received over 180,000 citations, marking a pivotal moment in deep learning for computer vision [3] - The third and fourth positions in the citation rankings are held by researchers in the medical field, highlighting the interdisciplinary nature of high-impact research [6] Group 2 - Kaiming He ranks fifth, with his paper on Deep Residual Learning for Image Recognition cited over 290,000 times, establishing a foundation for modern deep learning [6] - The paper by He is recognized as the most cited paper of the 21st century according to Nature, emphasizing its lasting influence [9] - Ilya Sutskever, another prominent figure in AI, ranks seventh with over 670,000 total citations, showcasing the strong presence of AI researchers in citation rankings [10]
超97万:Yoshua Bengio成历史被引用最高学者,何恺明进总榜前五
机器之心· 2025-08-25 06:08
Core Insights - The article highlights the prominence of AI as the hottest research direction globally, with Yoshua Bengio being the most cited scientist ever, accumulating a total citation count of 973,655 and 698,008 citations in the last five years [1][3]. Group 1: Citation Rankings - The AD Scientific Index ranks 2,626,749 scientists from 221 countries and 24,576 institutions based on total citation counts and recent citation indices [3]. - Yoshua Bengio's work on Generative Adversarial Networks (GANs) has surpassed 100,000 citations, outpacing his co-authored paper "Deep Learning," which also exceeds 100,000 citations [3][4]. - Geoffrey Hinton, a pioneer in AI, ranks second with over 950,000 total citations and more than 570,000 citations in the last five years [4][5]. Group 2: Notable Papers and Their Impact - The paper "AlexNet," co-authored by Hinton, Krizhevsky, and Sutskever, has received over 180,000 citations, marking a significant breakthrough in deep learning for computer vision [5][6]. - Kaiming He’s paper "Deep Residual Learning for Image Recognition" has over 290,000 citations, establishing ResNet as a foundational model in modern deep learning [10][11]. - The article notes that ResNet is recognized as the most cited paper of the 21st century, with citation counts ranging from 103,756 to 254,074 across various databases [11]. Group 3: Broader Implications - The high citation counts of these influential papers indicate their lasting impact on the academic community and their role in shaping future research directions in AI and related fields [17].
性能暴涨4%!CBDES MoE:MoE焕发BEV第二春,性能直接SOTA(清华&帝国理工)
自动驾驶之心· 2025-08-18 23:32
Core Viewpoint - The article discusses the CBDES MoE framework, a novel modular expert mixture architecture designed for BEV perception in autonomous driving, addressing challenges in adaptability, modeling capacity, and generalization in existing methods [2][5][48]. Group 1: Introduction and Background - The rapid development of autonomous driving technology has made 3D perception essential for building safe and reliable driving systems [5]. - Existing solutions often use fixed single backbone feature extractors, limiting adaptability to diverse driving environments [5][6]. - The MoE paradigm offers a new solution by enabling dynamic expert selection based on learned routing mechanisms, balancing computational efficiency and representational richness [6][9]. Group 2: CBDES MoE Framework - CBDES MoE integrates multiple structurally heterogeneous expert networks and employs a lightweight self-attention router (SAR) for dynamic expert path selection [3][12]. - The framework includes a multi-stage heterogeneous backbone design pool, enhancing scene adaptability and feature representation [14][17]. - The architecture allows for efficient, adaptive, and scalable 3D perception, outperforming strong single backbone baseline models in complex driving scenarios [12][14]. Group 3: Experimental Results - In experiments on the nuScenes dataset, CBDES MoE achieved a mean Average Precision (mAP) of 65.6 and a NuScenes Detection Score (NDS) of 69.8, surpassing all single expert baselines [37][39]. - The model demonstrated faster convergence and lower loss throughout training, indicating higher optimization stability and learning efficiency [39][40]. - The introduction of load balancing regularization significantly improved performance, with the mAP increasing from 63.4 to 65.6 when applied [42][46]. Group 4: Future Work and Limitations - Future research may explore patch-wise or region-aware routing for finer granularity in adaptability, as well as extending the method to multi-task scenarios [48]. - The current routing mechanism operates at the image level, which may limit its effectiveness in more complex environments [48].
刚刚,何恺明官宣新动向~
自动驾驶之心· 2025-06-26 10:41
Core Viewpoint - The article highlights the significant impact of Kaiming He joining Google DeepMind as a distinguished scientist, emphasizing his dual role in academia and industry, which is expected to accelerate the development of Artificial General Intelligence (AGI) at DeepMind [1][5][8]. Group 1: Kaiming He's Background and Achievements - Kaiming He is renowned for his contributions to computer vision and deep learning, particularly for introducing ResNet, which has fundamentally transformed deep learning [4][18]. - He has held prestigious positions, including being a research scientist at Microsoft Research Asia and Meta's FAIR, focusing on deep learning and computer vision [12][32]. - His academic credentials include a tenure as a lifelong associate professor at MIT, where he has published influential papers with over 713,370 citations [18][19]. Group 2: Impact on Google DeepMind - Kaiming He's expertise in computer vision and deep learning is expected to enhance DeepMind's capabilities, particularly in achieving AGI within the next 5-10 years, as stated by Demis Hassabis [7][8]. - His arrival is seen as a significant boost for DeepMind, potentially accelerating the development of advanced AI models [5][39]. Group 3: Research Contributions - Kaiming He has published several highly cited papers, including works on Faster R-CNN and Mask R-CNN, which are among the most referenced in their fields [21][24]. - His recent research includes innovative concepts such as fractal generative models and efficient one-step generative modeling frameworks, showcasing his continuous contribution to advancing AI technology [36][38].
刚刚,何恺明官宣入职谷歌DeepMind!
猿大侠· 2025-06-26 03:20
Core Viewpoint - Kaiming He, a prominent figure in AI and computer vision, has officially joined Google DeepMind as a distinguished scientist while retaining his position as a tenured associate professor at MIT, marking a significant boost for DeepMind's ambitions in artificial general intelligence (AGI) [2][5][6]. Group 1: Kaiming He's Background and Achievements - Kaiming He is renowned for his contributions to deep learning, particularly for developing ResNet, which has fundamentally transformed the trajectory of deep learning and serves as a cornerstone for modern AI models [5][17]. - His academic influence is substantial, with over 713,370 citations for his papers, showcasing his impact in the fields of computer vision and deep learning [17][18]. - He has received numerous prestigious awards, including the best paper awards at major conferences such as CVPR and ICCV, highlighting his significant contributions to the field [23][26]. Group 2: Implications of His Joining DeepMind - Kaiming He's expertise in computer vision and deep learning is expected to accelerate DeepMind's efforts towards achieving AGI, a goal that Demis Hassabis has indicated could be realized within the next 5-10 years [8][9]. - His recent research focuses on developing models that learn representations from complex environments, aiming to enhance human intelligence through more capable AI systems [16][17]. - The addition of Kaiming He to DeepMind is seen as a strategic advantage, potentially leading to innovative breakthroughs in AI model development [6][37].