Workflow
自动驾驶VLA
icon
Search documents
突然发现,新势力在集中IPO......
自动驾驶之心· 2025-10-06 04:05
Group 1 - The article highlights a surge in IPO activities within the autonomous driving sector, indicating a significant shift in the industry landscape with new players entering the market [1][2] - Key events include the acquisition of Shenzhen Zhuoyu Technology by China First Automobile Works, Wayve's partnership with NVIDIA for a $500 million investment, and multiple companies filing for IPOs or completing strategic investments [1] - The article discusses the intense competition in the autonomous driving field, suggesting that many companies are pivoting towards embodied AI as a response to market saturation [1][2] Group 2 - The article emphasizes the importance of comprehensive skill sets for professionals remaining in the autonomous driving industry, as the market is expected to undergo significant restructuring [2] - It mentions the creation of a community platform, "Autonomous Driving Heart Knowledge Planet," aimed at providing resources and networking opportunities for individuals interested in the field [3][19] - The community offers a variety of learning resources, including video tutorials, technical discussions, and job placement assistance, catering to both beginners and experienced professionals [4][11][22] Group 3 - The community has gathered over 4,000 members and aims to expand to nearly 10,000 within two years, focusing on knowledge sharing and technical collaboration [3][19] - It provides structured learning paths and resources for various topics in autonomous driving, including end-to-end learning, multi-sensor fusion, and real-time applications [19][39] - The platform also facilitates discussions on industry trends, job opportunities, and technical challenges, fostering a collaborative environment for knowledge exchange [20][91]
清华教研团队!两个月从零搭建一套自己的自动驾驶VLA模型
自动驾驶之心· 2025-09-28 07:21
Core Viewpoint - The focus of academia and industry after end-to-end systems is on VLA (Vision-Language-Action), which provides human-like reasoning capabilities for safer and more reliable autonomous driving [1][4]. Summary by Sections Introduction to Autonomous Driving VLA - VLA is categorized into modular VLA, integrated VLA, and reasoning-enhanced VLA, which are essential for advancing autonomous driving technology [1][4]. Technical Maturity and Employment Demand - The demand for autonomous driving VLA solutions is high among major companies, prompting them to invest in self-research and development [4]. Course Overview - A comprehensive learning roadmap for autonomous driving VLA has been designed, covering principles to practical applications [4][6]. Core Content of Autonomous Driving VLA - Key topics include visual perception, large language models, action modeling, model deployment, and dataset creation, with cutting-edge algorithms like CoT, MoE, RAG, and reinforcement learning [6]. Course Collaboration - The course is developed in collaboration with Tsinghua University's research team, featuring detailed explanations of algorithms and practical assignments [6]. Course Structure - The course consists of six chapters, each focusing on different aspects of VLA, including algorithm introduction, foundational algorithms, VLM as an interpreter, modular and integrated VLA, reasoning-enhanced VLA, and a final project [12][20]. Chapter Details - Chapter 1 covers the concept and history of VLA algorithms, including benchmarks and evaluation metrics [13]. - Chapter 2 focuses on foundational algorithms related to Vision, Language, and Action, along with model deployment [14]. - Chapter 3 discusses VLM's role as an interpreter in autonomous driving, highlighting key algorithms [15]. - Chapter 4 delves into modular and integrated VLA, emphasizing the evolution of language models in planning [16]. - Chapter 5 explores reasoning-enhanced VLA, introducing new modules for decision-making and action output [17]. - Chapter 6 involves a hands-on project where participants build and fine-tune their models [20]. Learning Outcomes - The course aims to deepen understanding of VLA's current advancements and core algorithms, equipping participants with practical skills for future research and applications in the autonomous driving sector [22][26]. Course Schedule - The course is set to begin on October 20, with a structured timeline for each chapter's release [23]. Prerequisites - Participants are expected to have a foundational knowledge of autonomous driving, large models, reinforcement learning, and programming skills in Python and PyTorch [26].
基于模仿学习的端到端决定了它的上限不可能超越人类
自动驾驶之心· 2025-09-24 06:35
Core Viewpoint - The article discusses the evolution of end-to-end (E2E) autonomous driving technology, emphasizing the transition from rule-based to data-driven approaches, and highlights the limitations of current models in handling complex scenarios. It introduces Visual Language Models (VLM) and Visual Language Agents (VLA) as potential solutions to enhance the capabilities of autonomous driving systems [2][3]. Summary by Sections Introduction to VLA - VLA represents a shift from merely imitating human behavior to understanding and interacting with the physical world, addressing the limitations of traditional E2E models in complex driving scenarios [2]. Challenges in Autonomous Driving - The VLA technology stack is still evolving, with numerous algorithms emerging, indicating a lack of convergence in the field [3]. Course Overview - A course titled "Autonomous Driving VLA and Large Model Practical Course" is being prepared to address various aspects of VLA, including its origins, algorithms, and practical applications [5]. Learning Objectives - The course aims to provide a comprehensive understanding of VLA, covering topics such as data set creation, model training, and performance enhancement [5][17]. Course Structure - The course is structured into several chapters, each focusing on different aspects of VLA, including algorithm introduction, foundational knowledge, VLM as an interpreter, modular and integrated VLA, reasoning enhancement, and practical assignments [20][26][31][34][36]. Instructor Background - The instructors have extensive experience in multimodal perception, autonomous driving, and large model frameworks, contributing to the course's credibility [38]. Expected Outcomes - Participants are expected to gain a thorough understanding of current advancements in VLA, master core algorithms, and be able to apply their knowledge in practical settings [39][40]. Course Schedule - The course is set to begin on October 20, with a structured timeline for each chapter's release [43].
自动驾驶VLA发展到哪个阶段了?现在还适合搞研究吗?
自动驾驶之心· 2025-09-22 08:04
Core Insights - The article discusses the transition in intelligent driving technology from rule-driven to data-driven approaches, highlighting the emergence of VLA (Vision-Language Action) as a more straightforward and effective method compared to traditional end-to-end systems [1][2] - The challenges in the current VLA technology stack are emphasized, including the complexity and fragmentation of knowledge, which makes it difficult for newcomers to enter the field [2][3] - A new practical course on VLA has been developed to address these challenges, providing a structured learning path for students interested in advanced knowledge in autonomous driving [3][4][5] Summary by Sections Introduction to VLA - The article introduces VLA as a significant advancement in autonomous driving, offering a cleaner approach than traditional end-to-end systems, while also addressing corner cases more effectively [1] Challenges in Learning VLA - The article outlines the difficulties faced by learners in navigating the complex and fragmented knowledge landscape of VLA, which includes a plethora of algorithms and a lack of high-quality documentation [2] Course Development - A new course titled "Autonomous Driving VLA Practical Course" has been created to provide a comprehensive overview of the VLA technology stack, aiming to facilitate easier entry into the field for students [3][4] Course Features - The course is designed to address key pain points, offering quick entry into the subject matter through accessible language and examples [3] - It aims to build a framework for understanding VLA research and enhance research capabilities by teaching students how to categorize papers and extract innovative points [4] - The course includes practical components to ensure that theoretical knowledge is effectively applied in real-world scenarios [5] Course Outline - The course covers various topics, including the origins of VLA, foundational algorithms, and the differences between modular and integrated VLA systems [6][15][19][20] - It also includes practical coding exercises and projects to reinforce learning and application of concepts [22][24][26] Instructor Background - The course is led by experienced instructors with a strong background in multi-modal perception, autonomous driving, and large model frameworks, ensuring high-quality education [27] Learning Outcomes - Upon completion, students are expected to have a thorough understanding of current advancements in VLA, core algorithms, and the ability to apply their knowledge in practical settings [28][29]
VLA的论文占据自动驾驶前沿方向的主流了。。。
自动驾驶之心· 2025-09-19 16:03
Core Insights - The article emphasizes the growing importance of Vision-Language Alignment (VLA) in the field of autonomous driving, highlighting its dominance in recent conferences and research outputs [1][3]. - VLA enables autonomous vehicles to make decisions in diverse scenarios, moving beyond traditional single-task methods, and offers potential solutions for corner cases [3][4]. Summary by Sections VLA in Autonomous Driving - VLA and its derivatives have become a primary focus for both autonomous driving companies and academic institutions, accounting for nearly half of the advancements in the field [1]. - The technology stack for autonomous driving VLA is still evolving, with numerous algorithms emerging, leading to challenges in entry and understanding [4]. Educational Initiatives - A new course titled "Practical Tutorial on Autonomous Driving VLA" has been developed in collaboration with Tsinghua University to address the challenges faced by learners in this field [5][6]. - The course aims to provide a comprehensive understanding of the VLA technology stack, covering various modules such as visual perception, language, and action [4][5]. Course Features - The course is designed to facilitate quick entry into the field by using a Just-in-Time Learning approach, making complex concepts more accessible [5]. - It aims to build a framework for research capabilities, helping students categorize papers and extract innovative points [6]. - Practical applications are emphasized, with hands-on sessions to bridge theory and practice [7]. Course Outline - The curriculum includes an introduction to VLA algorithms, foundational algorithms, and the role of Vision-Language Models (VLM) as interpreters in autonomous driving [12][14][16]. - It covers modular and integrated VLA approaches, detailing the evolution of language models from passive descriptions to active planning components [18]. - The course also addresses reasoning-enhanced VLA, focusing on long-chain reasoning and memory integration in decision-making processes [20]. Learning Outcomes - Participants are expected to gain a thorough understanding of current advancements in autonomous driving VLA and master core algorithms [25][26]. - The course requires prior knowledge in autonomous driving basics, familiarity with transformer models, and a foundation in probability and linear algebra [28]. Course Schedule - The course is set to commence on October 20, with a duration of approximately two and a half months, featuring offline video lectures and online Q&A sessions [29].
纯视觉最新SOTA!AdaThinkDrive:更灵活的自动驾驶VLA思维链(清华&小米)
自动驾驶之心· 2025-09-18 23:33
Core Viewpoint - The article discusses the limitations of existing Chain-of-Thought (CoT) reasoning methods in Vision-Language-Action (VLA) models for autonomous driving, particularly in simple scenarios where they do not improve decision quality and introduce unnecessary computational overhead. It introduces AdaThinkDrive, a new VLA framework that employs a dual-mode reasoning mechanism inspired by the "fast and slow thinking" theory, allowing the model to adaptively choose when to reason based on scene complexity [3][4][10]. Group 1: Introduction and Background - The shift from traditional modular approaches to end-to-end architectures in autonomous driving systems is highlighted, noting that while modular methods offer flexibility, they suffer from information loss between components, leading to cumulative errors in complex scenarios. End-to-end methods mitigate this issue but are still limited by their reliance on supervised data [7]. - The article categorizes current VLA methods into two paradigms: meta-action methods focusing on high-level guidance and planning-based methods that predict trajectories directly from raw inputs. The application of CoT techniques is becoming more prevalent, particularly in complex scenarios, but their effectiveness in simple scenarios is questioned [14][15]. Group 2: AdaThinkDrive Framework - AdaThinkDrive is proposed as an end-to-end VLA framework that incorporates a "fast answer/slow thinking" mechanism, allowing the model to switch adaptively between direct prediction and explicit reasoning based on scene complexity. This is achieved through a three-stage adaptive reasoning strategy [11][18]. - The framework's performance is validated through extensive experiments on the Navsim benchmark, achieving a Predictive Driver Model Score (PDMS) of 90.3, which is 1.7 points higher than the best pure visual baseline model. The model demonstrates superior adaptive reasoning capabilities, selectively enabling CoT in 96% of complex scenarios and defaulting to direct trajectory prediction in 84% of simple scenarios [4][18][50]. Group 3: Experimental Results and Analysis - The article presents a comprehensive evaluation of AdaThinkDrive against existing models, showing that it outperforms both "always think" and "never think" baseline models, with PDMS improvements of 2.0 and 1.4 points, respectively. Additionally, the reasoning time is reduced by 14% compared to the "always think" baseline, indicating a balance between accuracy and efficiency [4][18][58]. - The results indicate that the optimal reasoning strategy is not universal but depends on scene complexity, emphasizing the need for models to adaptively enable reasoning based on the context [10][18]. Group 4: Conclusion - The article concludes that reasoning in simple scenarios often increases computational costs without enhancing decision quality. AdaThinkDrive addresses this by allowing agents to learn when to think, guided by an adaptive thinking reward mechanism. The experimental results on the NAVSIM benchmark demonstrate that AdaThinkDrive achieves state-of-the-art performance, underscoring the importance of adaptive thinking for accurate and efficient decision-making in autonomous driving systems [66].
国内首个自动驾驶VLA实战课程来了(模块化/一体化/推理增强VLA)
自动驾驶之心· 2025-09-16 10:49
Core Viewpoint - The article discusses the transition in intelligent driving technology from rule-driven to data-driven approaches, highlighting the limitations of end-to-end models in complex scenarios and the potential of VLA (Vision-Language Action) as a more streamlined solution [1][2]. Summary by Sections Introduction to VLA - The article emphasizes the ongoing challenges in the VLA technology stack, noting the proliferation of algorithms and the difficulties faced by newcomers in navigating this complex field [2]. Course Development - A new course titled "Practical Tutorial on Autonomous Driving VLA" has been developed in collaboration with academic teams to address the challenges in learning VLA technology, providing a comprehensive overview of the technical stack involved [2][3]. Course Features - The course is designed to: - Address pain points and facilitate quick entry into the field through accessible language and case studies [3]. - Build a framework for research capabilities by helping students categorize papers and extract innovative points [4]. - Combine theory with practice, ensuring a complete learning loop [5]. Course Outline - The course covers various topics, including the origins of VLA, foundational algorithms, and the construction of datasets for VLA [6][15][19]. Chapter Breakdown - **Chapter 1**: Overview of VLA algorithms and their historical development, including benchmarks and evaluation metrics [15]. - **Chapter 2**: Focus on foundational algorithms related to Vision, Language, and Action modules, including deployment of large models [17]. - **Chapter 3**: Discussion of VLM as an interpreter in autonomous driving, covering classic and cutting-edge algorithms [19]. - **Chapter 4**: Examination of modular and integrated VLA, detailing the evolution of language models in planning and control [21]. - **Chapter 5**: Exploration of reasoning-enhanced VLA, emphasizing the integration of reasoning modules in decision-making processes [24]. - **Chapter 6**: A major project where students will build their own networks and datasets, focusing on practical application [26]. Instructor Background - The course is led by experienced instructors with a strong background in multimodal perception, autonomous driving VLA, and large model frameworks [27]. Learning Outcomes - Upon completion, students are expected to have a thorough understanding of current advancements in VLA, core algorithms, and practical applications in projects [29][31].
公司通知团队缩减,懂端到端的留下来了。。。
自动驾驶之心· 2025-08-19 23:32
Core Viewpoint - The article discusses the rapid evolution and challenges in the field of end-to-end autonomous driving technology, emphasizing the need for a comprehensive understanding of various algorithms and models to succeed in this competitive industry [2][4][6]. Group 1: Industry Trends - The shift from modular approaches to end-to-end systems in autonomous driving aims to eliminate cumulative errors between modules, marking a significant technological leap [2]. - The emergence of various algorithms and models, such as UniAD and BEV perception, indicates a growing focus on integrating multiple tasks into a unified framework [4][9]. - The demand for knowledge in multi-modal large models, reinforcement learning, and diffusion models is increasing, reflecting the industry's need for versatile skill sets [5][20]. Group 2: Learning Challenges - New entrants face difficulties due to the fragmented nature of knowledge and the overwhelming volume of research papers in the field, often leading to early abandonment of learning [5][6]. - The lack of high-quality documentation and practical guidance further complicates the transition from theory to practice in end-to-end autonomous driving research [5][6]. Group 3: Course Offerings - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address the learning challenges, focusing on practical applications and theoretical foundations [6][24]. - The course is structured to provide a comprehensive understanding of end-to-end algorithms, including their historical development and current trends [11][12]. - Practical components, such as real-world projects and assignments, are included to ensure that participants can apply their knowledge effectively [8][21]. Group 4: Course Content Overview - The course covers various topics, including the introduction to end-to-end algorithms, background knowledge on relevant technologies, and detailed explorations of both one-stage and two-stage end-to-end methods [11][12][13]. - Specific chapters focus on advanced topics like world models and diffusion models, which are crucial for understanding the latest advancements in autonomous driving [15][17][20]. - The final project involves practical applications of reinforcement learning from human feedback (RLHF), allowing participants to gain hands-on experience [21].
这几个方向,从自驾转大模型会比较丝滑......
自动驾驶之心· 2025-08-06 11:25
Core Insights - The article discusses the booming field of large models in AI, particularly focusing on various directions such as RAG (Retrieval-Augmented Generation), AI Agents, and multi-modal models [1][2]. Group 1: Large Model RAG - Large model RAG is highlighted as a significant area, with emphasis on understanding components like retrievers, augmenters, and generators, and how knowledge bases can enhance performance [1]. - The article mentions the rapid development of subfields within RAG, including Graph RAG, applications in visual understanding, and various knowledge-oriented methods [1]. Group 2: AI Agents - AI Agents are identified as a hot direction in large models, covering topics such as single-agent and multi-agent systems, reinforcement learning, and efficient communication among agents [1]. - The integration of RAG with agents is also noted as a promising area for exploration [1]. Group 3: Multi-modal Models - The article points out the extensive directions available in multi-modal models, including visual language models, pre-training datasets, and fine-tuning processes [2]. - Deployment, inference, and optimization of these models are also discussed as critical components of the development process [2]. Group 4: Community and Learning - The article encourages engagement with the "Big Model Heart Tech" community for further learning and collaboration in the field of large models [3]. - The community aims to build a significant platform for talent and academic information related to large models [3].
4000人了,死磕技术的自动驾驶黄埔军校到底做了哪些事情?
自动驾驶之心· 2025-07-31 06:19
Core Viewpoint - The article emphasizes the importance of creating an engaging learning environment in the field of autonomous driving and AI, aiming to bridge the gap between industry and academia while providing valuable resources for students and professionals [1]. Group 1: Community and Resources - The community has established a closed loop across various fields including industry, academia, job seeking, and Q&A exchanges, focusing on what type of community is needed [1][2]. - The platform offers cutting-edge academic content, industry roundtables, open-source code solutions, and timely job information, streamlining the search for resources [2][3]. - A comprehensive technical roadmap with over 40 technical routes has been organized, catering to various interests from consulting applications to the latest VLA benchmarks [2][14]. Group 2: Educational Content - The community provides a series of original live courses and video tutorials covering topics such as automatic labeling, data processing, and simulation engineering [4][10]. - Various learning paths are available for beginners, as well as advanced resources for those already engaged in research, ensuring a supportive environment for all levels [8][10]. - The community has compiled a wealth of open-source projects and datasets related to autonomous driving, facilitating quick access to essential materials [25][27]. Group 3: Job Opportunities and Networking - The platform has established a job referral mechanism with multiple autonomous driving companies, allowing members to submit their resumes directly to desired employers [4][11]. - Continuous job sharing and position updates are provided, contributing to a complete ecosystem for autonomous driving professionals [11][14]. - Members can freely ask questions regarding career choices and research directions, receiving guidance from industry experts [75]. Group 4: Technical Focus Areas - The community covers a wide range of technical focus areas including perception, simulation, planning, and control, with detailed learning routes for each [15][29]. - Specific topics such as 3D target detection, BEV perception, and online high-precision mapping are thoroughly organized, reflecting current industry trends and research hotspots [42][48]. - The platform also addresses emerging technologies like visual language models (VLM) and diffusion models, providing insights into their applications in autonomous driving [35][40].