Workflow
中微子振荡参数
icon
Search documents
地下700米捕捉“幽灵粒子” 中国开启中微子研究新篇章
Core Insights - The Jiangmen Neutrino Experiment (JUNO) has officially begun data collection as of August 26, 2023, aiming to address significant questions in particle physics, particularly the mass ordering of neutrinos [1][2] - This facility, constructed over more than a decade, is designed to provide high-precision measurements of neutrino oscillation parameters and explore various astrophysical phenomena [1][2] Group 1 - The experiment is located 700 meters underground in Jiangmen, Guangdong, featuring a large organic glass sphere with a diameter exceeding 35 meters, which captures neutrinos [1] - Neutrinos are fundamental particles that constitute the material world and are the most abundant particles in the universe, yet many mysteries surrounding them remain unsolved [1][2] - The core detector of the experiment contains 20,000 tons of liquid scintillator, with thousands of photomultiplier tubes embedded in its outer wall to detect weak light signals generated by neutrino interactions [1][2] Group 2 - The project team successfully filled over 60,000 tons of ultra-pure water within 45 days, ensuring the liquid level difference between the inner and outer spheres is controlled to a centimeter level, with a flow deviation of no more than 0.5% [2] - The experiment is a collaboration involving approximately 700 researchers from 17 countries and regions, marking the first operation of such a large-scale and high-precision neutrino-specific scientific facility internationally [2] - The design lifespan of the Jiangmen Neutrino Experiment is planned for 30 years, with potential upgrades to conduct double beta decay experiments to investigate the absolute mass of neutrinos and whether they are Majorana particles [2]
中国开启中微子研究新篇章
Ren Min Ri Bao· 2025-09-05 20:57
Core Insights - The Jiangmen Neutrino Experiment (JUNO) has officially commenced data collection as of August 26, 2023, aiming to address significant questions in particle physics, particularly the mass ordering of neutrinos [1][2] - This facility, constructed over more than a decade, represents a major advancement in neutrino research, building on previous experiments like the Daya Bay Neutrino Experiment [1][2] Group 1: Project Overview - The JUNO facility is located 700 meters underground in Jiangmen, Guangdong, featuring a large acrylic sphere with a diameter exceeding 35 meters designed to detect neutrinos [1] - The experiment will not only focus on neutrino mass ordering but also measure neutrino oscillation parameters with higher precision and explore various astrophysical phenomena [1][2] Group 2: Technical Achievements - The project team successfully filled over 60,000 tons of ultra-pure water within 45 days, maintaining a liquid level difference within centimeters and a flow deviation of less than 0.5%, ensuring the stability and safety of the detector [2] - This experiment is the first of its kind to operate a large-scale, high-precision neutrino detection facility internationally, providing insights into fundamental questions about matter and the universe [2] Group 3: Future Prospects - The JUNO facility is designed for a lifespan of 30 years, with potential upgrades to conduct double beta decay experiments to investigate the absolute mass of neutrinos and test if they are Majorana particles [2] - The collaboration involves approximately 700 researchers from 17 countries and regions, marking a significant international effort in advancing neutrino physics [2]
探寻地下700米的粒子世界
Ke Ji Ri Bao· 2025-08-27 01:32
Core Insights - The Jiangmen Underground Neutrino Observatory (JUNO) has successfully completed the infusion of 20,000 tons of liquid scintillator and has officially begun data collection, marking a historic milestone in neutrino research [1][2] - JUNO is the first large-scale, high-precision neutrino detector in the world, aimed at addressing fundamental questions about the nature of matter and the universe [1][2] - The detector is located 700 meters underground in Jiangmen, Guangdong Province, and can detect neutrinos from nuclear power plants located 53 kilometers away, measuring their energy spectrum with unprecedented precision [1][2] Technical Details - JUNO's design allows for the measurement of neutrino mass ordering without being affected by terrestrial matter effects and other unknown neutrino oscillation parameters, significantly improving the precision of three out of six neutrino oscillation parameters [2] - The core of the JUNO detector consists of a 20,000-ton liquid scintillator housed in an organic glass sphere, surrounded by thousands of photomultiplier tubes that detect faint light signals produced when neutrinos interact [2] - The construction of JUNO involved extensive planning, testing, and collaboration among hundreds of engineers and technicians, ensuring strict requirements for material purity, stability, and safety [2] Collaborative Efforts - JUNO is a major international collaboration led by the Institute of High Energy Physics of the Chinese Academy of Sciences, involving approximately 700 researchers from 74 institutions across 17 countries and regions [3] - The success of JUNO is attributed to effective international cooperation, which brought expertise in liquid scintillator detection technology to the project, pushing the boundaries of this technology [3] - The design lifespan of JUNO is planned for 30 years, with potential upgrades to become the world's most sensitive experiment for neutrinoless double beta decay, aiming to measure the absolute mass of neutrinos and investigate whether neutrinos are Majorana particles [3]
我国地下700米有个全球第一!网友:虽然不是很懂,但是大受震撼
Mei Ri Jing Ji Xin Wen· 2025-08-26 13:41
Core Insights - The Jiangmen Underground Neutrino Observatory (JUNO) has successfully completed the infusion of 20,000 tons of liquid scintillator and has officially begun data collection, marking it as the first operational large-scale and high-precision neutrino-specific scientific facility in the world [1][9] - The initial data collected during the trial operation indicates that the key performance indicators of the JUNO detector have met or exceeded design expectations, enabling it to address a significant issue in particle physics: the ordering of neutrino masses [1][9] Group 1 - The JUNO detector is located 700 meters underground near Jiangmen, Guangdong Province, and can detect neutrinos produced by the Taishan and Yangjiang nuclear power plants, measuring their energy spectrum with unprecedented precision [2] - Unlike similar international experiments, JUNO's measurement of mass ordering is unaffected by terrestrial material effects and other unknown neutrino oscillation parameters, significantly improving the precision of three out of six neutrino oscillation parameters [2] Group 2 - The JUNO project was proposed by the Institute of High Energy Physics, Chinese Academy of Sciences in 2008, received strategic support in 2013, and began construction of the underground laboratory in 2015 [5] - The laboratory construction was completed in December 2021, and the detector installation began, with the infusion of ultra-pure water and liquid scintillator starting in December 2024 [5] - The project team successfully infused over 60,000 tons of ultra-pure water within 45 days, maintaining a liquid level difference within centimeters and a flow deviation of no more than 0.5%, ensuring the safety and stability of the detector structure [5] Group 3 - The core detector of JUNO has an effective mass of 20,000 tons and is located in a 44-meter deep water pool, featuring a stainless steel mesh shell that supports various critical components, including a 35.4-meter diameter acrylic sphere and numerous photomultiplier tubes [7] - The JUNO project is a major international collaboration led by the Institute of High Energy Physics, involving nearly 700 researchers from 74 institutions across 17 countries and regions [9] - The design lifespan of JUNO is 30 years, with potential upgrades to become the world's most sensitive experiment for neutrinoless double beta decay, which could provide insights into fundamental questions about the nature of matter and the universe [9]
江门中微子实验运行,助力破解粒子物理和宇宙学前沿交叉热点难题
Xin Jing Bao· 2025-08-26 00:50
Core Insights - The Jiangmen Underground Neutrino Observatory (JUNO) has officially begun data collection after completing the infusion of 20,000 tons of liquid scintillator, marking a significant milestone in neutrino research [1][3] - The initial data from JUNO indicates that its key performance metrics have met or exceeded design expectations, enabling the investigation of a major question in particle physics: the mass ordering of neutrinos [1][2] Group 1: Project Overview - JUNO is the first large-scale, high-precision neutrino detector in the world, designed to address fundamental questions about the nature of matter and the universe [1] - The project was proposed by the Institute of High Energy Physics of the Chinese Academy of Sciences in 2008, with construction starting in 2015 and completion of the detector's installation in December 2021 [3] Group 2: Technical Specifications - The core detector of JUNO has an effective mass of 20,000 tons and is located 700 meters underground, allowing it to detect neutrinos from nearby nuclear power plants with unprecedented precision [2][4] - The detector's design includes a 41.1-meter diameter stainless steel shell supporting a 35.4-meter diameter acrylic sphere filled with liquid scintillator, along with numerous photomultiplier tubes for detecting neutrino interactions [4] Group 3: Future Prospects - JUNO has a designed operational lifespan of 30 years and can be upgraded to become the world's most sensitive experiment for neutrinoless double beta decay, potentially providing insights into the absolute mass of neutrinos and their nature [4] - The successful operation of JUNO is expected to open new avenues for research in particle physics, astrophysics, and cosmology, significantly enhancing the understanding of the universe [4]