推理优化
Search documents
从“预测下一个词”到“预测世界状态”:智源发布2026十大 AI技术趋势
Sou Hu Cai Jing· 2026-01-09 00:02
Core Insights - The core viewpoint of the report is that AI is transitioning from merely predicting language to understanding and modeling the physical world, marking a significant paradigm shift in technology [1][4][5]. Group 1: Key Trends in AI Technology - Trend 1: The consensus in the industry is shifting from language models to multi-modal world models that understand physical laws, with Next-State Prediction (NSP) emerging as a new paradigm [7]. - Trend 2: Embodied intelligence is moving from laboratory demonstrations to real-world industrial applications, with humanoid robots expected to transition to actual service scenarios by 2026 [8]. - Trend 3: Multi-agent systems are becoming crucial for solving complex problems, with the standardization of communication protocols like MCP and A2A facilitating collaboration among agents [9]. Group 2: Applications and Market Dynamics - Trend 4: AI is evolving from a supportive tool to an autonomous researcher, with the integration of scientific foundational models and automated laboratories accelerating research in new materials and pharmaceuticals [10]. - Trend 5: The competition for consumer AI super applications is intensifying, with major players like OpenAI and Google leading the way in creating integrated intelligent assistants [11]. - Trend 6: After a phase of concept validation, enterprise AI applications are entering a "valley of disillusionment," but a recovery is expected in the second half of 2026 as data governance improves [12]. Group 3: Data and Performance Enhancements - Trend 7: The reliance on synthetic data is increasing, which is crucial for model training, especially in fields like autonomous driving and robotics [13]. - Trend 8: Optimization of inference remains a key focus, with ongoing innovations in algorithms and hardware reducing costs and improving efficiency [15]. - Trend 9: The development of a heterogeneous software stack is essential to break the monopoly on computing power and mitigate supply risks [16]. Group 4: Security and Ethical Considerations - Trend 10: AI security risks are evolving from "hallucinations" to more subtle "systemic deceptions," necessitating a comprehensive approach to safety and alignment in AI systems [17]. Conclusion - The report outlines ten key AI technology trends that provide a clear anchor for future technological exploration and industry layout, emphasizing the importance of collaboration across academia and industry to drive AI towards a new phase of value realization [18].
智源2026十大趋势预测:AI在物理世界「睁眼」
Sou Hu Cai Jing· 2026-01-08 16:08
AIPress.com.cn报道 当大模型不再仅仅满足于预测下一个汉字,而是试图预测世界的下一个状态时,人工智能才真正开始理解因果,触摸现实。这是未来,也是2026年AI即 将发生的变化。 本文结合智源研究院提出的AI十大趋势预测,梳理了AI在2026的将有之变,相信能够为我们勾勒了一幅从虚拟走向实体、从单体走向群智的未来图景。 图说:智源研究院 2026十大AI技术趋势 趋势一:世界模型确立认知新范式 行业对于智能的理解,正经历一场静水流深的转变,共识正从单一的语言模型,转向能够理解物理规律的多模态世界模型。 Next-State Prediction(NSP)范式的确立,标志着AI不再仅仅满足于在文本中预测下一个词汇,它开始尝试预测世界的下一个状态。 正如智源悟界所验证的那样,当机器掌握了时空连续性与因果关系,它便跨越了感知的边界,触碰到了真正的认知与规划。 趋势二:具身智能的产业"出清"与落地 趋势五:新"BAT"格局下的垂直突围 C端超级应用的"All in One"入口成为兵家必争之地。海外有OpenAI与Google引领风骚,国内字节、阿里、蚂蚁等巨头亦依托生态积极布局。 我们可以看到,蚂蚁推出的 ...
智源研究院发布2026十大AI技术趋势:NSP范式重构世界认知,超级应用与安全并进
Huan Qiu Wang· 2026-01-08 09:41
智源研究院理事长黄铁军分享了他的技术趋势观察:AI的发展要重视"结构决定功能,功能塑造结构"的相互作用。当前人工智能正从功能模仿转向理解物理 世界规律,这一根本转变意味着AI正褪去早期狂热,其发展路径日益清晰,即真正融入实体世界,解决系统性挑战。 随后,智源研究院院长王仲远发布了十大AI技术趋势,详细阐释了这一变革。基础模型的竞争,焦点已从"参数有多大"转变为"能否理解世界如何运转"。他 指出:我们正从 "预测下一个词"跨越到"预测世界的下一个状态"。这标志着以"Next-State Prediction"(NSP)为代表的新范式,正推动AI从数字空间的"感 知"迈向物理世界的"认知"与"规划"。 报告认为,2026年将是AI从数字世界迈入物理世界、从技术演示走向规模价值的关键分水岭。这一转变由三条清晰的主线驱动: 首先,是认知范式的"升维"。以世界模型和NSP为核心,AI开始学习物理规律,这为自动驾驶仿真、机器人训练等复杂任务提供全新的"认知"基础,成为国 内外领先模型厂商竞相布局的战略高地。 其次,是智能形态的"实体化"与"社会化"。智能正从软件走向实体,从单体走向协同。头部科技公司的人形机器人正进入真实 ...
智源研究院发布2026十大AI技术趋势
Jing Ji Guan Cha Wang· 2026-01-08 09:08
趋势3:多智能体系统决定应用上限,Agent时代的"TCP/IP"初具雏形 复杂问题的解决依赖多智能体协同。随着MCP、A2A等通信协议趋于标准化,智能体间拥有了通用"语 言"。多智能体系统将突破单体智能天花板,在科研、工业等复杂工作流中成为关键基础设施。 趋势4:AI Scientist成为AI4S北极星,国产科学基础模型悄然孕育 AI在科研中的角色正从辅助工具升级为自主研究的"AI科学家"。科学基础模型与自动化实验室的结合, 将极大加速新材料与药物研发。报告强调,我国需整合力量,加快构建自主的科学基础模型体系。 趋势5:AI时代的新"BAT"趋于明确,垂直赛道仍有高盈利玩法 经济观察网2026年1月8日,北京智源人工智能研究院发布年度报告《2026十大AI技术趋势》。报告指 出,人工智能的演进核心正发生关键转移:从追求参数规模的语言学习,迈向对物理世界底层秩序的深 刻理解与建模,行业技术范式迎来重塑。 趋势1:世界模型成为AGI共识方向,Next-State Prediction或成新范式 行业共识正从语言模型转向能理解物理规律的多模态世界模型。从"预测下一个词"到"预测世界下一状 态",NSP范式标志着 ...
让大模型不再过度思考!上海AI Lab后训练新范式重塑CoT,推理又快又好
量子位· 2025-12-21 02:00
RePro团队 投稿 量子位 | 公众号 QbitAI 这篇论文将推理的过程视为模型内部状态的优化过程,从而对如何重塑大模型的CoT提供了一个全新视角: 核心观察:推理即优化 RePro 基于这样一个核心思想:将模型的推理轨迹 (Trajectory) 看作是在损失曲面上寻找最优解的路径。 然而,"长思考"并非总是完美的。我们常发现模型会陷入 "过度思考" (Overthinking) 的陷阱:为了得出一个简单的结论,模型可能会生成 数千个冗余Token,甚至在错误的路径上反复横跳 (Backtracking) 。这不仅浪费了宝贵的算力,还增加了推理延迟。 RePro的三大"矫正"机制 近年来,随着o1、DeepSeek-R1等模型的爆发,Long Chain-of-Thought (Long CoT) 已成为提升LLM复杂推理能力的标配。 如何让模型在"深思熟虑"的同时,保持"思维敏捷"? 基于上述视角,RePro设计了一套过程奖励机制,直接嵌入到RLVR (如PPO,GRPO) 流程中。 近日,上海人工智能实验室的研究团队提出了一种全新的后训练范式—— RePro (Rectifying Process- ...
AICon 2025 深圳回顾:AI Agent 爆火全场,管理与推理优化成新焦点
AI前线· 2025-09-06 05:33
Core Insights - The AICon 2025 highlighted the deep integration of AI into core business practices and personal work methods, showcasing its transformative impact on various industries [2][30]. Group 1: Event Overview - The conference took place on August 22-23, 2025, at the Shenzhen Bay Renaissance Hotel, featuring over 70 speakers and attracting more than 800 developers and corporate representatives [2][3]. - The most discussed topic was AI Agent applications and ecosystems, with an average attendance of over 200 participants per session, making it the focal point of the event [3][7]. - An unexpected highlight was the session on enterprise management and personal efficiency, which drew a record attendance of 236 participants [3][14]. Group 2: Keynote Highlights - The opening keynote attracted over 800 attendees, marking the highest attendance of the event, with notable speakers discussing the significance of AI in business [4]. - Key insights included the importance of delivering business results over merely building platforms, as emphasized by Alibaba Cloud's Jiang Linquan [4]. - Other notable presentations included Kuaishou's introduction of a generative recommendation system that significantly reduced inference costs and HSBC's exploration of intelligent upgrades in banking through code quality analysis [4]. Group 3: AI Agent Focus - The "Agent Application New Paradigm and MCP Ecosystem Practice" session was highly popular, with Amazon Web Services' presentation attracting 291 attendees, the highest for that day [7]. - Subsequent sessions on "Agent + Data Implementation Exploration" continued the trend, with significant attendance figures, indicating a strong interest in AI Agent technologies [9][11]. Group 4: Technical Foundations - The focus on inference optimization and computing resource scheduling remained a priority, with sessions on high-efficiency inference technologies drawing considerable interest from developers [12]. - Presentations on distributed inference optimization and long-context inference solutions were well-attended, reflecting the industry's need for performance enhancement under limited computing resources [12]. Group 5: Industry Applications - AI's penetration into sectors such as finance, manufacturing, and gaming was evident, with discussions on the application of intelligent agents in risk control and product innovation in finance [16][17]. - The manufacturing sector showcased the potential of large models, while gaming applications highlighted AI's role in game development [17]. Group 6: Developer Engagement - The developer exhibition featured cutting-edge technologies, attracting significant interaction and engagement from attendees, showcasing the innovative spirit of the AI community [19]. - Participants had the opportunity to experience various AI hardware innovations, enhancing the overall technological atmosphere of the event [19]. Group 7: Recognition and Future Outlook - The event recognized outstanding contributors with awards for "Outstanding Producers" and "Star Lecturers," emphasizing the importance of quality content and engagement in the AI community [24]. - The conference concluded with a vision for the future, highlighting AI's evolving role as a collaborator rather than just a tool, and the anticipation for further integration of AI into business and personal practices [30].