纳米压印光刻
Search documents
EUV光刻机,很难被颠覆
半导体芯闻· 2025-10-28 10:34
如果您希望可以时常见面,欢迎标星收藏哦~ 大约每隔 6 个月,我们就会看到有关纳米压印光刻颠覆 EUV 的新一轮头条新闻。 这听起来像是个不错的标题党,但事实并非如此。这项技术有很多有趣且有效的应用,但远不及 EUV所能达到的程度。理论上,NIL可以匹敌甚至超越EUV。但实际上,NIL存在一些严重的问 题,而且目前还没有明确的发展方向。 在本文中,我们将从理论层面与晶圆厂实际操作层面解释这些差异。我们还将详细介绍市场中的关 键参与者及其可能的应用场景。首先,我们来了解一下 NIL 的基本概念及其功能: NIL 基础知识和历史 纳米压印光刻技术使用带图案的"印章"在树脂上压印图案。在半导体生产中,它与 ASML 的光刻 技术实现相同的最终目标——将掩模上的图案转移到晶圆上。这些图案只是芯片设计的一层。堆叠 50-100 层,进行图案化处理,然后在每一层上进行蚀刻和沉积等其他技术,最终构建出完整的芯 片。 最有前景的纳米级NIL技术发明于1996年,并于2001年从学术界分离出来,成为一家商业实体, 即Molecular Imprints Inc.(MII)。佳能于2014年收购了MII,并在ASML开始向客户研 ...
EUV很难被颠覆,纳米压印也不行
半导体行业观察· 2025-10-27 00:51
Core Viewpoint - The article discusses the potential of Nano Imprint Lithography (NIL) technology as a competitor to Extreme Ultraviolet (EUV) lithography, highlighting its theoretical advantages but also significant practical challenges that hinder its adoption in advanced semiconductor manufacturing [2][30]. Group 1: NIL Technology Overview - NIL technology uses patterned "stamps" to imprint designs onto resin, aiming to transfer patterns from masks to wafers, similar to ASML's lithography technology [3]. - The most promising NIL technology was invented in 1996 and commercialized in 2001 as Molecular Imprints Inc. (MII), later acquired by Canon in 2014 [5]. - Canon positions NIL as the next-generation patterning technology following DUV, claiming it to be the only technology that can surpass KrF scanners [8]. Group 2: NIL Process and Mechanism - Canon's NIL process, termed "J-FIL," involves applying photoresist, imprinting with a mask, and curing with ultraviolet light, optimizing the coating process to enhance throughput [9][11]. - The imprinting process is designed to minimize defects and improve efficiency, with a total cycle time of approximately 1.3 seconds per wafer [28]. Group 3: Comparison with EUV - Theoretically, NIL can achieve higher resolution than EUV, with significant cost and power consumption advantages, as NIL's operational power is claimed to be reduced by 90% compared to EUV [30]. - Despite these advantages, the industry is cautious about adopting NIL due to unresolved practical challenges [30]. Group 4: Key Challenges - The lifespan of NIL masks is a critical issue, with current estimates suggesting they can only be used for about 50 wafers, compared to over 100,000 for traditional lithography masks [32]. - Overlay accuracy and the ability to align printed patterns with existing layers on the wafer present significant technical hurdles [34]. - Customer feedback indicates that NIL technology is not yet ready for advanced chip manufacturing, with concerns about resolution limits and mask roughness affecting performance [37].