免疫检查点抑制剂

Search documents
Cell子刊:利用细胞焦亡,增强肺癌免疫治疗效果
生物世界· 2025-08-18 04:05
Core Viewpoint - The study highlights that high-dose ascorbic acid can selectively induce pyroptosis in LKB1-deficient non-small cell lung cancer (NSCLC) cells and enhance their sensitivity to immune checkpoint inhibitors (ICIs) [4][6]. Group 1: LKB1 Deficiency and Immune Resistance - LKB1 mutations lead to primary resistance to ICIs in NSCLC, characterized by a "cold tumor" subtype with insufficient Tpex cell infiltration [2][6]. - Tpex cells, which are crucial for responding to PD-1/PD-L1 blockade therapies, show high expression levels of the transcription factor TCF1 [2]. Group 2: Mechanism of Action - High-dose ascorbic acid exacerbates oxidative stress in LKB1-deficient NSCLC cells by upregulating the transporter GLUT1, leading to increased accumulation of ascorbic acid [6][8]. - The oxidative stress triggers pyroptosis in LKB1-deficient NSCLC cells through the H₂O₂/ROS-caspase-3-GSDME signaling axis [6][8]. Group 3: Clinical Implications - In preclinical models, high-dose ascorbic acid reverses ICI resistance and reshapes the immune microenvironment characterized by TCF1+ CD8+ T cell infiltration [7][8]. - Pyroptosis-driven immunogenic cell death promotes the maturation of cross-presenting dendritic cells, which is essential for Tpex cell expansion [7][8]. - The study provides a theoretical basis for clinical trials combining ICIs with high-dose ascorbic acid [7][8].