Workflow
核聚变反应堆
icon
Search documents
谷歌追加投资 TAE Technologies 助力核聚变发电研发
Huan Qiu Wang· 2025-06-05 03:35
今年 4 月,TAE 宣布重大技术突破:不再依赖发射两个等离子球启动反应,转而仅通过粒子束即可完成等离子体的形成、加热与稳定。公司表示,这一设 备精简举措将使反应堆体积更小、成本更低且操作更便捷。 【环球网科技综合报道】6月5日消息,核电研发公司 TAE Technologies 近日宣布完成新一轮 1.5 亿美元融资,本轮投资来自谷歌、雪佛龙和 New Enterprise 等现有投资者。据 PitchBook 数据显示,截至目前,该公司累计融资约 18 亿美元,成为全球融资规模领先的核聚变公司之一。 TAE 前身为 Tri Alpha Energy,多年来持续秘密推进反应堆技术研发。其早期采用的技术路径是将两个等离子球相互发射,通过粒子束使其旋转。这种形似 空心雪茄的等离子球形体能够产生自身磁场,并与反应堆磁铁协同作用,实现对等离子体的约束控制。 谷歌与 TAE 的合作渊源已久。自 2014 年起,谷歌计算机科学家便与 TAE 工程师携手,利用机器学习这一人工智能技术探索核聚变装置的理想运行参数。 TAE 首席执行官 Michl Binderbauer 曾于 2022 年介绍,在人工智能应用前,参数优化需 ...
谷歌投资TAE Technologies,再次押注核聚变发电
Sou Hu Cai Jing· 2025-06-04 17:29
TAE 原名为 Tri Alpha Energy,多年来在"隐身模式"下开发其反应堆设计。该公司最初采用的方案是将 两个等离子体球发射碰撞,然后用粒子束使形成的等离子团旋转。这个等离子团外形像一根中空的雪 茄,可自行产生磁场,与反应堆本身的磁体协同工作,实现对高温等离子体的约束。 今年 4 月,TAE 宣布技术取得重大突破:不再需要发射两个等离子球来启动反应,而是能直接通过粒 子束生成、加热并稳定单个等离子体。TAE 表示,这样可以让反应堆变得更小、更便宜、也更易于运 行。 谷歌已参与 TAE 两轮融资,上一轮是在 2022 年,当时筹资 2.5 亿美元。事实上,谷歌与 TAE 的合作 可以追溯到 2014 年,谷歌的计算机科学家与 TAE 工程师合作,利用机器学习(AI)寻找聚变装置的最 佳运行参数。 TAE 首席执行官 米歇尔·宾德鲍尔(Michl Binderbauer)曾在 2022 年对媒体表示,在使用 AI 之前,优 化反应堆参数需要约 两个月时间、1000 次实验。而 AI 技术的引入将实验次数减少了两个数量级,仅 需几小时即可完成。 商业化核聚变能源,从来不是件便宜或快速的事。 本周,TAE ...
【行业前瞻】2025-2030年中国自学习边缘计算智控器行业发展分析
Sou Hu Cai Jing· 2025-05-30 11:26
可控核聚变行业由于较高的技术门槛,较少的企业参与其中,且当前仍处于技术攻关阶段,商业化不 足,科研主体为中国科学院合肥物质研究院等离子体物理研究所和核工业西南物理研究院(隶属于中国 核工业集团有限公司)等研究机构,项目建设中向相关企业采购相关材料设备。中国核建承担ITER核心 安装工程,掌握全超导托卡马克装置建造技术;中国核电牵头组建可控核聚变创新联合体,并于2025年2 月斥资10亿元入股中国聚变能源公司,这两家是国内可控核聚变产业的龙头企业。此外,西部超导、永 鼎股份、联创光电、上海电气等企业也参与了可控核聚变装置中关键器件的布局,能量奇点、瀚海聚 能、星环聚能等民营企业也参与可控核聚变中部分关键设计和技术研发工作。 行业主要上市公司:安泰科技(000969.SZ),中国广核(003816.SZ),永鼎股份(600105.SH),西部超导 (688122.SH),上海电气(601727.SH)等 中国可控核聚变行业整体竞争格局 中国可控核聚变行业市场区域竞争格局 通过企查猫,通过检索"可控核聚变"、登记状态为"存续/在业"的机构,截至2025年3月25日,中国相关 企业及研究院所共计170家,从我国可控核 ...
美银:带你走进核聚变反应堆!不产生钚或浓缩铀,强大到举起航空母舰的超导磁体!
智通财经网· 2025-05-26 10:18
Core Insights - The recent State Council meeting approved the "Manufacturing Green Low-Carbon Development Action Plan (2025-2027)", which is expected to boost nuclear energy, environmental protection, and photovoltaic sectors [1] - Trump's announcement of a new nuclear policy aims to initiate the construction of 10 large nuclear power plants by 2030 and quadruple the U.S. nuclear power capacity by 2050, leading to a surge in nuclear-related stocks [1] - Bank of America organized a field trip to leading nuclear fusion research centers in France, including the CEA and ITER, to provide investors with insights into the latest developments in nuclear fusion technology [1][4] Nuclear Fusion Research - Nuclear fusion is considered a key to decarbonization and is viewed as the "holy grail" of energy transition, offering a safe and sustainable path for clean energy [2] - The ITER project, with a budget of $22 billion, aims to demonstrate the feasibility of large-scale nuclear fusion power generation and is a multinational collaboration involving several countries [3][7] - The CEA's WEST tokamak recently set a world record by maintaining nuclear fusion plasma at 50 million degrees Celsius for 22 minutes, contributing to the testing of components needed for ITER [3][20] Technical Challenges and Innovations - Achieving nuclear fusion requires creating plasma at temperatures ten times hotter than the sun, which presents significant engineering challenges, particularly in material science [2][11] - The ITER project aims for a 10:1 energy gain ratio, which will be achieved by scaling up the machine size compared to existing reactors [12] - Key challenges include developing materials that can withstand extreme temperatures and neutron damage, effective heat management, and ensuring the self-recycling of tritium fuel [13] Economic and Geopolitical Aspects - The ITER project involves seven participating countries, sharing costs and intellectual property, highlighting the importance of international cooperation despite geopolitical tensions [8] - The potential for nuclear fusion to provide zero-carbon energy and serve as a heat source for industrial processes could significantly enhance energy security [6] Future Prospects - The timeline for ITER's full operation has been pushed to 2039 due to technical and regulatory delays, but the project is expected to create commercial potential for various technologies [16] - The construction of superconducting magnets for ITER is underway, with the capability to generate a magnetic field strong enough to lift an aircraft carrier [14] - The operational power demand for ITER during peak plasma operation is projected to be between 110 MW and 620 MW, with significant energy consumption for cooling and low-temperature systems [15]