神经网络

Search documents
2025边缘AI报告:实时自主智能,从范式创新到AI硬件的技术基础
3 6 Ke· 2025-03-28 11:29
在上篇文章《巨头入局TinyML,端侧与边缘AI迎来新拐点》中,我曾提到TinyML基金会进行了品牌重塑,已更名为边缘智能(Edge AI)基金会。 近日,边缘智能基金会发布了2025年度最新版本的《2025边缘AI技术报告》。该报告对边缘智能以及微型机器学习TinyML的发展趋势进行了全面扫描和 总结。 从报告内容来看,TinyML的成熟度可能超出了很多人的预期,已经在现实场景中产生了众多应用案例。 报告的亮点如下: 边缘AI的技术推动因素:报告深入探讨了支持边缘AI部署的软硬件进步,重点关注了专用处理器和超低功耗设备的创新,这些创新正在克服资源受限环 境中处理能力和可扩展性的限制。 边缘AI在行业转型中的作用:报告揭示了边缘AI如何通过实现实时分析和决策能力,影响各个行业的运营模式。 未来技术与创新:报告的最后章节展望了可能影响边缘AI未来发展的新兴技术,例如联合学习、量子神经网络和神经形态计算等。 因此,在今天这篇文章中,我们将一起梳理《2025边缘AI技术报告》的精华内容,全面了解TinyML以及边缘AI的最新进展和发展全貌。 实时、在地、高效:边缘AI在六大行业的创新应用 随着市场对低延迟、实时处理 ...
36氪精选:外国人垄断的高端助听器,中国企业正靠AI翻盘
日经中文网· 2025-03-28 07:12
Core Viewpoint - The article discusses the potential of AI and deep learning technologies to revolutionize the hearing aid industry, addressing long-standing challenges in sound recognition and user satisfaction [5][6][9]. Group 1: Current Market Landscape - The hearing aid market is dominated by five major companies: Sonova, Demant, Starkey, which control over 90% of sales [5]. - Despite advancements, many new tech companies face challenges in core algorithms and chip monopolies [5][6]. - The penetration rate of hearing aids remains low, with only 6.5% of users satisfied with their devices [6][7]. Group 2: Technological Advancements - AI and deep learning models like DeepSeek are providing new opportunities for hearing aid manufacturers to enhance product capabilities [5][9]. - Traditional hearing aids rely on digital signal processing algorithms that struggle with noise cancellation and voice recognition in complex environments [8][9]. - Recent innovations include deep neural networks (DNN) that allow hearing aids to learn from real-world sounds, improving their performance in noisy settings [8][9][10]. Group 3: Consumer Trends and Market Dynamics - There is a growing consumer awareness and acceptance of professional hearing aids, moving away from low-cost sound amplifiers [12]. - The distinction between medical-grade and consumer-grade hearing aids is significant, with prices ranging from 5,000 to 40,000 yuan for medical-grade devices, while consumer-grade devices are priced between 1,500 and 4,000 yuan [13]. - The emergence of consumer-grade hearing aids aims to reduce costs and improve accessibility, potentially allowing new entrants to capture market share [12][13]. Group 4: Future Outlook - The article suggests that consumer-grade hearing aids will become an important segment of the market, although they may not fully replace professional fitting services [15]. - The competitive landscape may remain dominated by established players in the short term, but long-term success will depend on factors like pricing, understanding of local language contexts, and after-sales service [15][16].
诺奖采访深度学习教父辛顿:最快五年内 AI 有 50% 概率超越人类,任何说“一切都会好起来”的人都是疯子
AI科技大本营· 2025-03-18 03:29
作者 | 诺贝尔奖官方 采访中,辛顿表达了对人工智能未来发展的担忧。他认为, 人工智能可能在短短五年内超越人类智慧 ,并就此可能引发的社会风险,例如大规模失业 和虚假信息等问题,提出了警告。更令人深思的是,辛顿暗示,人工智能的潜在风险可能远超我们目前的认知。 编译 | 王启隆 出品丨AI 科技大本营(ID:rgznai100) 杰弗里·辛顿(Geoffrey Hinton),这位被誉为"人工智能教父"的科学家,于去年获得了诺贝尔物理学奖,引起了全网一阵讨论。 最近辛顿接受了诺贝尔奖官方的专访,他回忆起接到诺奖电话时的趣事时,第一反应竟然是疑惑,因为自己研究的并非物理学(这点和全网的疑惑倒是 一样)。 作为深度学习领域的先驱,辛顿最广为人知的成就是神经网络。但很多人其实不知道, 他曾说过自己这辈子"最自豪"也是"最失败"的成就,其实是与 特里·塞诺夫斯基(Terry Sejnowski)共同提出了玻尔兹曼机理论。 详见: 《 深度学习之父 Hinton 万字访谈录:中美 AI 竞赛没有退路可言 》 他们的工作,以及另一位诺奖物理学奖得主约翰·霍普菲尔德(John Hopfield)等神经网络先驱的早期研究,共同 ...