信息存储
Search documents
【人民网】中国科研团队在铁电材料中发现一维带电畴壁
Ren Min Wang· 2026-01-26 02:31
利用极限尺寸功能结构大幅提升器件的存储密度,是当今物质科学和信息技术交叉融合的前沿领 域。近日,中国科学院物理研究所团队成功在萤石结构铁电材料中发现了一维带电畴壁,厚度和宽度均 约为人类头发直径的数十万分之一,为开发具有极限密度的器件提供了科学基础。相关成果1月23日发 表于国际学术期刊《科学》。 铁电材料是一类特殊的晶体材料,内部的正负电荷无需外部电场作用也能自发分离且规则排列,分 离方向一致的区域形成铁电畴,畴壁则是不同铁电畴间的界面。以往学界认为三维晶体中的畴壁必然是 二维的面,这项研究发现颠覆了这一传统认知。 据介绍,铁电材料在信息存储、传感、人工智能等领域应用潜力巨大。利用一维带电畴壁进行信息 存储,有望使存储密度提高约几百倍,理论预计达每平方厘米约20TB,相当于将1万部高清电影或20万 段高清短视频存储在一张邮票大小的设备中。 ...
我国铁电材料获重大突破 未来信息存储密度有望提升数百倍
Xin Lang Cai Jing· 2026-01-24 13:24
中国青年报客户端讯(中青报·中青网记者 张渺)近日,中国科学院物理研究所/北京凝聚态物理国家研 究中心联合研究团队通过激光法创制了自支撑萤石结构铁电薄膜,并利用电子显微镜技术对薄膜中的一 维带电畴壁进行了原子尺度的观测和调控,为开发具有极限密度的人工智能器件提供了科学基础。利用 这些一维带电畴壁进行信息存储,预计将比当前的存储密度提高约几百倍,理论预计可达每平方厘米约 20TB,相当于将1万部高清电影或20万段高清短视频存储在一张邮票大小的设备中。1月23日,相关成 果在国际学术期刊《科学》发表。 来源:中国青年报客户端 据研究者介绍,铁电材料是一种即使没有外部电场,也能自发地存在正负电荷分离且规则排列的材料。 铁电材料与畴壁研究是当今物质科学和信息技术交叉融合的前沿领域,其核心在于通过对材料内部极 化"开关"(铁电畴)及其边界(畴壁)的精确调控,来创造新一代高性能器件,以应对信息存储、人工 智能、高端装备与前沿科技竞争等多方面的国家战略需求。萤石结构铁电材料的出现为该领域带来了新 机遇,团队从2018年便开始了萤石结构铁电材料的研究,通过维度限制设计思路,在三维晶体里寻找到 了一维带电畴壁新物态,补全了铁电 ...
【新华社】极限密度!我国新成果有望让器件“存得更多 占得更少”
Xin Hua She· 2026-01-23 05:54
据介绍,铁电材料在信息存储、传感、人工智能等领域应用潜力巨大。利用一维带电畴壁进行信息 存储,有望使存储密度提高约几百倍,理论预计达每平方厘米约20TB,相当于将1万部高清电影或20万 段高清短视频存储在一张邮票大小的设备中。相关论文成果已于北京时间1月23日凌晨在国际学术期刊 《科学》发表。 铁电材料是一类特殊的晶体材料,内部的正负电荷无需外部电场作用也能自发分离且规则排列,分 离方向一致的区域形成铁电畴,畴壁则是不同铁电畴间的界面。以往学界认为三维晶体中的畴壁必然是 二维的面,这项研究发现颠覆了这一传统认知。 利用极限尺寸功能结构大幅提升器件的存储密度,实现"存得更多、占得更少",是当今物质科学和 信息技术交叉融合的前沿领域。近日,中国科学院物理研究所团队成功在萤石结构铁电材料中发现了一 维带电畴壁,厚度和宽度均约为人类头发直径的数十万分之一,为开发具有极限密度的器件提供了科学 基础。 ...
极限密度!我国新成果有望让器件“存得更多 占得更少”
Xin Hua She· 2026-01-23 01:04
(文章来源:新华社) 据介绍,铁电材料在信息存储、传感、人工智能等领域应用潜力巨大。利用一维带电畴壁进行信息存 储,有望使存储密度提高约几百倍,理论预计达每平方厘米约20TB,相当于将1万部高清电影或20万段 高清短视频存储在一张邮票大小的设备中。相关论文成果已于北京时间1月23日凌晨在国际学术期刊 《科学》发表。 利用极限尺寸功能结构大幅提升器件的存储密度,实现"存得更多、占得更少",是当今物质科学和信息 技术交叉融合的前沿领域。近日,中国科学院物理研究所团队成功在萤石结构铁电材料中发现了一维带 电畴壁,厚度和宽度均约为人类头发直径的数十万分之一,为开发具有极限密度的器件提供了科学基 础。 铁电材料是一类特殊的晶体材料,内部的正负电荷无需外部电场作用也能自发分离且规则排列,分离方 向一致的区域形成铁电畴,畴壁则是不同铁电畴间的界面。以往学界认为三维晶体中的畴壁必然是二维 的面,这项研究发现颠覆了这一传统认知。 ...
安洁科技:公司主营业务涵盖消费电子、新能源汽车以及信息存储等板块
Zheng Quan Ri Bao· 2025-11-03 09:13
Core Viewpoint - Anjie Technology is actively expanding its business in consumer electronics, new energy vehicles, and information storage, while also planning to adapt its product offerings based on market and customer demands [2] Group 1: Business Operations - The company's main business segments include consumer electronics, new energy vehicles, and information storage [2] - Anjie Technology is considering timely adjustments to its product or solution offerings in response to market and customer needs [2] Group 2: Corporate Actions - The company is in the process of acquiring a portion of equity from Anjieli Meiwai through its wholly-owned subsidiary, with the work progressing as planned [2] - The equity transfer has not yet been completed, and it is currently not expected to have a significant impact on the company's overall performance [2]
刚得诺奖的成果被做成芯片了
猿大侠· 2025-10-14 04:11
Core Viewpoint - The article discusses the recent advancements in Metal-Organic Frameworks (MOFs) and their application in creating ultra-miniature fluid chips, highlighting their potential to revolutionize computing by mimicking brain-like memory functions [1][20]. Group 1: MOF Technology and Applications - MOFs, once deemed "useless," have gained recognition after winning the Nobel Prize in Chemistry, leading to innovative applications such as fluid chips [1][20]. - The newly developed fluid chips can perform conventional calculations while also retaining previous voltage changes, resembling short-term memory similar to that of brain neurons [2][3]. - The creation of advanced fluid chips using MOF materials addresses the challenges of high-precision nano-channel devices, enabling adjustable non-linear ion transport [4][5]. Group 2: Device Structure and Functionality - Researchers constructed a layered nano-fluid transistor device (h-MOFNT) using Zr-MOF-SO₃H crystals, which features heterogeneous junctions for enhanced performance [7][8]. - The device exhibits non-linear proton transport characteristics, differing from typical diode behavior, indicating a threshold-controlled transport mechanism [12][13]. - The h-MOFNT demonstrated a memory effect, capable of retaining past voltage states, which could lead to applications in liquid-based information storage and brain-like computing [18][19]. Group 3: Historical Context and Future Potential - Historically, MOFs have been viewed as having significant theoretical potential but lacking practical applications, with over 100,000 related papers published but few achieving industrial application [25][26]. - The challenges faced by MOFs include structural stability issues and complex synthesis processes, which have hindered their widespread use [27][28]. - The emergence of MOF-based chips suggests that the material may not be "useless" but rather that suitable applications have yet to be fully explored [29].
刚得诺奖的成果被做成芯片了
量子位· 2025-10-13 03:35
Core Viewpoint - The article highlights the recent breakthrough in using Metal-Organic Frameworks (MOFs) to create ultra-miniature fluid chips, which can perform computations and exhibit short-term memory similar to brain neurons, challenging the previous notion that MOFs were "useless" [1][20]. Group 1: MOF Technology and Applications - MOFs, once considered theoretical with limited practical applications, have now been recognized for their potential in advanced computing technologies following their Nobel Prize acknowledgment [1][21]. - The newly developed fluid chip, made from MOF materials, can overcome limitations of traditional electronic chips by enabling advanced functionalities [3][5]. - The h-MOFNT device constructed from layered Zr-MOF-SO₃H crystals demonstrates unique ion transport properties, allowing for precise control over ionic movement [7][12]. Group 2: Device Characteristics and Performance - The h-MOFNT device exhibits non-linear proton transport characteristics, which differ from typical diode behavior, indicating a threshold-controlled transport mechanism [12][13]. - Experimental results show that the device can remember past voltage states, demonstrating fluid memory and learning capabilities, akin to electronic devices [16][18]. - The ability to create a small fluid circuit using multiple h-MOFNTs showcases the potential for complex computations and memory functions in liquid systems [16][19]. Group 3: Historical Context and Future Prospects - Historically, despite extensive research (over 100,000 related papers), the practical industrial application of MOFs has been limited due to issues like structural stability and production costs [25][27]. - The emergence of MOF-based chips suggests that the material may not be "useless," but rather that suitable applications were not previously identified [29]. - Future developments may lead to the realization of liquid-based information storage and brain-like computing systems through innovative design of heterogeneous constraint systems [19].