炎症反应

Search documents
曹雪涛院士团队发表最新Nature子刊论文
生物世界· 2025-07-28 09:59
Core Viewpoint - The research highlights the role of RNA-binding protein RRP1 in regulating inflammation through its interaction with RNA, specifically in the context of one-carbon metabolism, providing new therapeutic targets for diseases like rheumatoid arthritis [3][10]. Group 1: Role of RBP in Inflammation - RNA-binding proteins (RBP) are crucial in the initiation and resolution of inflammation, and understanding their interaction with RNA and metabolism may offer new targets for controlling inflammation [5]. - RBP's interaction with RNA is dynamic and essential for maintaining cellular homeostasis, with dysregulation potentially leading to disease [3]. Group 2: Research Findings - The study published by the team led by Academician Cao Xuetao identified RRP1 as a suppressor of macrophage inflammation by regulating thymidylate synthase (Tyms) mRNA, affecting its transport and translation efficiency [3][10]. - RRP1 was found to inhibit one-carbon metabolism, thereby suppressing inflammatory responses in macrophages, which could provide a new strategy for treating autoimmune diseases [10]. Group 3: Mechanistic Insights - Mechanistically, RRP1 binds to the Tyms transcript and post-transcriptionally reduces TYMS protein levels, leading to the inhibition of folate metabolism and one-carbon metabolism-driven inflammation [7][10]. - Myeloid-specific RRP1-deficient mice exhibited severe experimental arthritis, with increased pro-inflammatory cytokines and immune damage, indicating the importance of RRP1 in inflammation regulation [8]. Group 4: Clinical Relevance - In rheumatoid arthritis patients, the expression of RRP1 in peripheral blood mononuclear cells was negatively correlated with TYMS expression and serum IL-1β levels, suggesting a potential biomarker role for RRP1 in inflammatory diseases [8].
芒果再创佳绩!最新科学研究证实,每日坚持食用定量芒果四周,即可有效提升胰岛素敏感性!
GLP1减重宝典· 2025-07-25 02:08
Core Viewpoint - The article emphasizes the potential health benefits of mango consumption, particularly its role in improving insulin sensitivity and metabolic health in overweight or obese individuals with chronic low-grade inflammation [3][10]. Summary by Sections Blood Sugar Regulation - Blood sugar is a crucial health indicator, with normal fasting levels between 3.9-6.1 mmol/L and postprandial levels not exceeding 7.8 mmol/L. Dietary choices significantly impact blood sugar control, where a balanced diet stabilizes blood sugar, while poor eating habits can lead to spikes [3]. Mango's Nutritional Benefits - Mango is highlighted for its high dietary fiber content and various vitamins and minerals. Previous studies have shown that moderate mango intake may positively affect blood sugar regulation and inflammation [3][10]. Clinical Study Overview - A recent randomized, placebo-controlled trial involved 48 participants with specific metabolic characteristics, including a BMI of ≥25 kg/m² and fasting blood glucose levels between 100-126 mg/dL. Participants were divided into two groups: one consuming fresh mango (approximately 230 grams daily) and the other receiving a mango-flavored placebo drink [6][7]. Study Findings - After four weeks, the study assessed blood sugar control using the oral glucose tolerance test (OGTT) and measured various metabolic parameters. Results indicated that regular mango consumption significantly improved insulin sensitivity, evidenced by decreased fasting insulin levels and improved HOMA-IR index [7][9]. Inflammation Markers - No significant statistical differences were found in inflammation markers between the mango and control groups, suggesting that mango's effect on insulin sensitivity may not directly involve inflammation pathways. The study primarily focused on IL-6, TNF-α, and hs-CRP, leaving out other relevant inflammatory markers [8]. Nrf-2 Gene Expression - An interesting finding was the approximately twofold increase in Nrf-2 gene expression in the mango group, although not statistically significant. Nrf-2 is crucial for activating antioxidant genes, which may enhance cellular antioxidant defenses and alleviate oxidative stress, potentially explaining the improvement in insulin sensitivity [9][10]. Conclusion and Future Research - The study concludes that mango, rich in active polyphenols and antioxidants, may serve as a dietary intervention for improving insulin resistance. Further research is recommended to explore the mechanisms and broader health benefits of mango consumption [10][11].
从北生所走出的未来科学家
经济观察报· 2025-07-23 10:54
十年里,生命科学领域共有14位未来科学大奖获奖者。其中, 邵峰、柴继杰、周俭民、李文辉4位获奖者的主要科学发现是 在北生所完成的。为什么北生所会出现这么多顶尖科学家、涌 现这么多原始创新成果?经济观察报曾分别专访这4位获奖 者,他们讲述了他们所知道的北生所。 作者:张铃 封图:图虫创意 北生所筹建于2003年,作为"中国科技体制改革试验田",这里无行政级别,无事业编制,科学家 能自主确定研究方向,也可以不为经费发愁。此后几年,一批优秀的年轻学者闻声而来,其中就包 括2004年加入的柴继杰和周俭民(后分别于2010年和2012年离开北生所)、2005年加入的邵峰、 2007年加入的李文辉。 为什么北生所会出现这么多顶尖科学家、涌现这么多原始创新成果? 经济观察报曾分别专访这4位 获奖者,他们讲述了他们所知道的北生所。 自主革自己的命 二十年前,决定回国并加入北生所时,邵峰并没有多数人的纠结。他设想了最坏的局面:给我三年 时间,如果做不出东西来,我就认了,大不了卷铺盖走人。 2025年7月,未来科学大奖举办十周年特别活动。这个由杨振宁发起的、被认为是中国本土最重要 的科学奖项,走到了第十个年头。 十年里,生命科学 ...
中国博后一作Cell论文:首次揭示pH依赖性转录凝聚体可调控炎症反应
生物世界· 2025-07-18 00:03
撰文丨王聪 编辑丨王多鱼 排版丨水成文 炎症 对于维持体内平衡以及保护组织和器官的完整性至关重要。然而,过度的炎症反应可能会导致严重的组织损伤。炎症反应的强度、持续时间和影响必须根据 炎症诱因的存在以及病理结果的程度进行调节。我们对于炎症的保护作用和病理作用的诸多认识,都与炎症反应如何影响器官功能有关。相比之下,我们对于特 定组织的状态如何影响炎症反应,仍知之甚少。 维持稳定的 pH 值 是组织内环境稳定的普遍特征。不同的组织和器官维持着不同的间质 pH 值环境,这些环境在炎症期间常常会受到干扰。例如,血液的 pH 值 被严格控制在 7.35-7.45 之间,而脓毒症中的严重酸中毒与不良预后相关;淋巴结副皮质区的 pH 值在 6.3-7.1 之间,在感染期间会变得更酸; 实体瘤通常表现 出酸性环境。这些都表明了 组织微环境偏离正常生理 pH 值 的酸化与炎症密切相关。 2025 年 7 月 17 日,波士顿儿童医院/哈佛大学医学院 周旭 教授团队与耶鲁大学 R uslan Medzhitov 教授 团队合作 (博士后 吴中洋 为论文第一作者) ,在国 际顶尖学术期刊 Cell 上发表了题为: Regulati ...
细胞核中的自救刹车!陈玲玲团队最新Cell论文揭开核应激小体的动态组装及其对急性炎症的调控机制
生物世界· 2025-05-27 23:50
撰文丨王聪 编辑丨王多鱼 排版丨水成文 细胞内稳态的调节是一个精妙平衡的过程。在应对环境和病理生理压力时,哺乳动物细胞会启动适应性且可逆的生存策略,包括广泛的基因转录抑 制;全局性翻译抑制;某些特定且关键基因的表达上调;以及无膜细胞器的形成——例如细胞质中形成的 应激颗粒 和细胞核中形成的 核应激小体 (nSB) 。 标题:细胞自救黑科技:核内"应急指挥中心"如何为致命炎症踩刹车? 2025 年 5 月 27 日, 中国科学院分子细胞科学卓越创新中心 陈玲玲 团队在国际顶尖学术期刊 Cell 上发表了题为: De novo assembly of nuclear stress bodies rearranges and enhances NFIL3 to restrain acute inflammatory responses 的研究论文 。 该 研究解析了 热休克 等刺激条件下 诱导产生的 无膜亚结构—— 核应激小体 ( nuclear stress body , nSB ) 的精细层级结构 和 动态 组装过 程,并揭示其 通过 拉近 与基因的三维距离 , 促进 NFIL3 等 基因的转录。 NFIL3 ...