生物混合机器人

Search documents
肺细胞制成的微型生物机器人问世
Ke Ji Ri Bao· 2025-09-30 23:44
美国卡内基梅隆大学研究团队开发出一种全新的工程方法,他们用人类肺细胞制成微型生物机器人。这 些由纤毛驱动的机器人被称为AggreBots,未来随着对运动模式的控制能力提升,它们有望在人体复杂 环境中执行特定的治疗性或机械性任务,例如输送药物。相关成果发表于新一期《科学进展》。 团队表示,这一方法为生物机器人和生物混合机器人设计提供了新角度。模块化组合有纤毛和无纤毛单 元,可创造出具有特定运动模式的机器人。由于AggreBots完全由生物材料组成,具备天然的可降解性 和生物相容性,未来有望直接用于医疗场景。同时,这种生物机器人也能够利用患者自身细胞制造,从 而构建个性化药物递送载体,避免免疫排斥。 (文章来源:科技日报) 生物机器人是显微镜级的人造生物机器,能自主运动并具备可编程性,可以执行特定任务。此前,它们 的运动主要依赖肌肉纤维的收缩和舒张。现在研究团队采用了另一种自然机制,即纤毛驱动。纤毛是纳 米级毛发状结构,能持续推动体液流动,在肺部等器官中至关重要。纤毛还能帮助草履虫和栉水母等水 生生物游动。但长期以来,如何稳定控制纤毛驱动机器人的形态和运动效果,一直是一大挑战。 为解决这一难题,研究团队首创了一种 ...
上海促进高端医疗器械发展;华龛生物完成数亿元B+轮融资
2 1 Shi Ji Jing Ji Bao Dao· 2025-09-15 23:41
21点评:全球高端医疗器械市场长期由欧美日企业主导,但近几年,我国创新医疗器械企业不断实现突 破,从原来更多的仿制欧美国家的产品,到现在不断出现一些自主研发的高端医疗器械,且在部分领域 已经出现领先产品。此前国家药监局已出台十项举措推动高端医疗发展,此次上海行动方案的出台,将 进一步促进医疗器械行业尤其是新技术的发展。 这里是《21健讯Daily》,欢迎与21世纪经济报道新健康团队共同关注医药健康行业最新事件! 政策动向 《上海市促进高端医疗器械产业全链条发展行动方案》印发 9月15日,上海市人民政府办公厅印发《上海市促进高端医疗器械产业全链条发展行动方案》,到2027 年,新增首次获批境内第三类医疗器械注册证超500件,新增在海外市场获批医疗器械产品超100件,培 育年产值超100亿元、具备较强国际竞争力的龙头企业2家,建设高端医疗器械产业集聚区3个。 河南:加强中医药大模型构建和训练 攻克中药产品一致性难题 9月15日,河南省人民政府办公厅印发《河南省加快人工智能赋能新型工业化行动方案(2025—2027 年)》,其中提出,现代医药产业方面,加快大模型在药物智能筛选、临床试验设计与分析、药物合成 工艺优化 ...
西贝内部人士回应“华与华10年咨询费6000万”:属实|首席资讯日报
首席商业评论· 2025-09-15 04:25
1.西贝内部人士回应"华与华10年咨询费6000万":属实 据新浪科技,9月14日晚间消息,近日,罗永浩与西贝之间关于预制菜的争议持续发酵,而华与华营销咨询 有限公司董事长华杉的言论也引发热议。2023年,华杉曾在社交媒体公开发文,"华与华为西贝服务了十 年,拿了六千多万的咨询费。华与华开创订阅制咨询服务模式,每年收钱不多,价值在过程中涌现。下一 个十年,我们也不贪心,拿一两个亿就行了。"对于6000万咨询费的说法,西贝内部人士回应:属实。 2.金逸影视:公司近期经营情况正常,内外部经营环境未发生重大变化 金逸影视9月14日公告,公司股票连续三个交易日内日收盘价格涨幅偏离值累计超过20%,根据《深圳证券 交易所交易规则》的相关规定,属于股票交易异常波动的情形。经核实,公司未发现前期披露的信息存在 需要更正、补充之处。公司未发现近期公共媒体有报道可能或已经对本公司股票交易价格产生较大影响的 未公开重大信息。公司近期经营情况正常,内外部经营环境未发生重大变化。除公司已披露过的事项外, 公司、控股股东和实际控制人不存在其他关于公司的应披露而未披露的重大事项,或处于筹划阶段的重大 事项。 3.生物混合爬行机器人问世 ...
当人造肌肉遇上机器人:牛津大学最新综述揭示组织工程与生物机器人的双向奔赴
机器人大讲堂· 2025-08-16 04:06
Core Viewpoint - The article discusses the evolution of skeletal muscle tissue engineering from medical needs to a key technology driving the development of biorobotics, highlighting its potential in both medical applications and robotics [1][2]. Group 1: Medical Needs and Challenges - Skeletal muscle constitutes over 40% of body weight and is essential for movement. Loss of more than 15%-20% of muscle can lead to permanent functional loss [4]. - Current treatment options primarily rely on autologous muscle transplantation, which has limitations such as donor site availability, significant surgical trauma, and suboptimal functional recovery [4]. Group 2: Development of Skeletal Muscle Tissue Engineering - Clinical needs have propelled the development of skeletal muscle tissue engineering, aiming to cultivate functional muscle tissue in vitro for repairing large muscle defects [5]. - Researchers discovered broader applications in biorobotics, as engineered muscle offers unique advantages such as high mechanical compliance, energy efficiency, and fine motor control [5]. Group 3: Key Strategies in Muscle Tissue Engineering - The core strategies in skeletal muscle tissue engineering include scaffold design, cell sourcing, external stimulation, and bioreactor technology, all of which are continuously innovating [5]. Group 4: Scaffold and Cell Selection - Scaffolds provide three-dimensional support for cell growth and must meet strict requirements such as biocompatibility, degradation rate matching tissue regeneration, and hardness close to natural muscle (10-20 kPa) [6]. - Various materials are explored, including synthetic polymers like PCL and PLGA, and natural materials like fibrin and collagen. Innovative approaches include using decellularized plant tissues as scaffolds [6]. - In cell selection, satellite cells are the best for differentiation but are difficult to obtain, while mesenchymal stem cells are easier to acquire but have limited differentiation potential [7]. Group 5: Stimulation and Cultivation Techniques - To make engineered muscle functional, it is essential to simulate physiological environments and provide appropriate stimulation signals, including mechanical, electrical, and biochemical stimuli [8]. - Mechanical stimulation is crucial, with optimal substrate hardness (8-11 kPa) and dynamic stretching (35% strain rate) promoting muscle fiber alignment and maturation [8]. - Electrical stimulation mimics motor neuron activation, significantly increasing muscle contraction force by three times through intermittent stimulation [8]. Group 6: Biorobotics and Muscle-Driven Robots - The integration of skeletal muscle tissue engineering with robotics has led to the emergence of biohybrid robots, which utilize engineered muscle tissue as actuators, offering advantages over traditional motors [12]. - These muscle actuators allow for fine control, inherent compliance, and the potential for self-repair and adaptive growth [12]. - Various proof-of-concept muscle-driven robots have been developed, including a notable 18 cm tall biohybrid hand capable of selective finger movement [13]. Group 7: Future Prospects - The future of skeletal muscle tissue engineering is promising, with potential applications in personalized tissue transplantation for muscle loss patients, new soft actuator systems in robotics, and other fields like cultured meat production and drug screening [14]. - This interdisciplinary field combines insights from biology, engineering, and materials science, generating valuable new knowledge and innovations [14].