免疫检查点抑制剂(ICI)

Search documents
Cell重磅发现:运动能抗癌,关键在于肠道菌群
生物世界· 2025-07-10 03:24
Core Viewpoint - Exercise is recognized as a significant factor in reducing cancer risk, enhancing the survival of cancer patients, and improving treatment outcomes, particularly through its effects on the gut microbiome and immune response [2][4][6]. Group 1: Research Findings - A study published in the journal Cell indicates that exercise induces the production of the gut microbiota metabolite formate, which enhances CD8 T cell antitumor immunity and improves the efficacy of cancer immunotherapy [3][4]. - The research highlights that the gut microbiome's metabolic products, rather than the microbiome itself, are crucial for the antitumor effects of exercise [9][10]. - The study identifies Nrf2 as a key mediator in the enhancement of Tc1 cell function driven by formate, both in vitro and in vivo [11]. Group 2: Implications for Cancer Treatment - The findings suggest that high-producing formate gut microbiota in humans can enhance tumor suppression and promote robust antitumor Tc1 immune responses, indicating formate as a potential biomarker for enhancing Tc1-mediated antitumor immunity [12][15]. - The research opens avenues for developing treatment strategies that combine exercise with microbiota-derived metabolites, particularly focusing on Nrf2 agonists like formate for patients resistant to immune checkpoint inhibitors [16][17].
Nature:华人团队发现癌症免疫治疗新靶点——PPP2R1A
生物世界· 2025-07-06 02:50
Core Viewpoint - Immune checkpoint inhibitors (ICIs) have transformed the treatment of various solid tumors, but resistance remains a significant challenge, particularly in advanced and recurrent ovarian cancer, where response rates to single-agent PD-1/PD-L1 inhibitors are only 5%-15% [2][3] Group 1: Research Findings - A study published in Nature by a team from MD Anderson Cancer Center found that patients with PPP2R1A gene mutations had significantly improved survival after receiving combined anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapy compared to those with wild-type PPP2R1A [3][6] - The presence of PPP2R1A mutations enhances tumor response to immunotherapy, and this finding was validated across various cancer types in clinical cohorts [3][9] - In recurrent ovarian cancer, dual targeting of PD-1/PD-L1 and CTLA-4 showed a response rate of 31.4% compared to 12.2% for single-agent PD-1 therapy, indicating a potential benefit for patients with ovarian clear cell carcinoma (OCCC) [5][6] Group 2: Clinical Implications - The study suggests that targeting PPP2R1A could represent an effective strategy to improve outcomes for cancer patients undergoing immunotherapy [9] - Enhanced immune cell infiltration and signaling pathways were observed in tumors with PPP2R1A mutations, indicating a more favorable immune environment for treatment [8] - The research team is conducting prospective trials to explore the efficacy of dual immune checkpoint blockade in OCCC patients, particularly those with platinum-resistant disease [5][6]
Immunity:揭开p53突变的新型促癌机制
生物世界· 2025-07-02 03:35
Core Viewpoint - The article discusses the role of the p53 R172H mutation in pancreatic ductal adenocarcinoma (PDAC), highlighting its contribution to creating an immunosuppressive tumor microenvironment and reducing the efficacy of immune checkpoint inhibitors (ICIs) [4][13][15]. Group 1: Background on PDAC - PDAC is a highly aggressive cancer characterized by KRAS gene activation mutations and TP53 gene alterations, with TP53 mutations leading to the loss of tumor suppressor function [2][6]. - Approximately 90% of PDAC cases have KRAS activation mutations, while around 70% exhibit changes in the TP53 tumor suppressor gene, indicating the critical role of p53 in genomic protection [7]. Group 2: Research Findings - A study published by MIT researchers reveals that the common p53 mutation, p53 R172H, occupies enhancers of immunosuppressive chemokines (e.g., Cxcl1), stimulating their expression and establishing an immunosuppressive tumor microenvironment in PDAC [3][4][11]. - The study indicates that knocking out the p53 R172H mutation enhances the efficacy of immune checkpoint inhibitors [13][15]. - Mechanistically, p53 R172H enhances Cxcl1 expression by occupying its distal enhancer, with NF-κB being a crucial cofactor for this process [12][15]. Group 3: Implications for Treatment - The findings suggest that p53 R172H promotes tumor growth by regulating cancer cell-specific gene expression programs that shape the tumor microenvironment, thereby inhibiting anti-tumor immune responses [15][16]. - In mouse models of PDAC, tumors lacking p53 R172H showed fewer T cells and higher levels of myeloid-derived suppressor cells (MDSCs), indicating a more favorable immune environment for tumor growth [15].