Workflow
ClaudeCode
icon
Search documents
X @𝘁𝗮𝗿𝗲𝘀𝗸𝘆
#AI伙伴开了个 AWS,初次使用 ClaudeCode 把 URL 发我登录一下就解锁了。理论上所有 ClaudeCode 关联请求都从 AWS 发起,和他本地(国内)没有任何联系。IP 问题解决了。随便搞张 US BIN 的卡去支付不就完了。没太理解用各种高价、不稳定、泄露隐私的中转服务,到底在折腾啥🤔 ...
一图看懂|如何用 AI 重构企业产品增长新曲线
AI前线· 2025-06-19 08:10
Core Insights - The AICon Beijing event on June 27-28 will focus on cutting-edge AI technology breakthroughs and industry applications, discussing topics such as AI Agent construction, multimodal applications, large model inference optimization, data intelligence practices, and AI product innovation [1] Group 1 - OpenAI is experiencing significant talent poaching, with reports of substantial signing bonuses, indicating a competitive landscape for AI talent [1] - The performance of DeepSeek R1 in programming tests has surpassed Opus 4, suggesting advancements in AI model capabilities [1] - There are concerns regarding the use of AI in governance, highlighted by the leak of Trump's AI plan on GitHub, which has drawn criticism from the public [1] Group 2 - The departure of executives from Jieyue Xingchen to JD.com reflects ongoing talent movement within the AI sector [1] - Baidu is aggressively recruiting top AI talent, with job openings increasing by over 60%, indicating a strong demand for skilled professionals [1] - Alibaba has acknowledged pressure from competitors like DeepSeek, suggesting a highly competitive environment in the AI industry [1] Group 3 - Employees are reportedly willing to spend $1,000 daily on ClaudeCode, indicating high demand for advanced AI tools despite their cost [1]
推理、训练、数据全链条的工程挑战,谁在构建中国 AI 的底层能力?|AICon 北京
AI前线· 2025-06-16 07:37
Core Viewpoint - The rapid evolution of large models has shifted the focus from the models themselves to systemic issues such as slow inference, unstable training, and data migration challenges, which are critical for the scalable implementation of technology [1] Group 1: Key Issues in Domestic AI - Domestic AI faces challenges including computing power adaptation, system fault tolerance, and data compliance, which are essential for its practical application [1] - The AICon conference will address seven key topics focusing on the infrastructure of domestic AI, including native adaptation of domestic chips for inference and cloud-native evolution of AI data foundations [1] Group 2: Presentations Overview - The "Chitu Inference Engine" by Qingcheng Jizhi aims to efficiently deploy FP8 precision models on domestic chips, overcoming reliance on NVIDIA's Hopper architecture [4] - Huawei's "DeepSeek" architecture will discuss performance optimization strategies for running large models on domestic computing platforms [5][6] - JD Retail's presentation will cover the technical challenges and optimization practices for high throughput and low latency in large language models used in retail applications [7] - Alibaba's session will explore the design and future development of reinforcement learning systems, emphasizing the complexity of algorithms and system requirements [8] - The "SGLang Inference Engine" will present an efficient open-source deployment solution that integrates advanced technologies to reduce inference costs [9] - Ant Group will share insights on stability practices in large model training, focusing on distributed training fault tolerance and performance analysis tools [10] - Zilliz will discuss the evolution of data infrastructure for AI, including vector data migration tools and cloud-native data platforms [11]